KHRCONOS

(Vu liKan.

The future of
high-performance graphics

GROUP

KHRCONOS

Welcome

Tom Olson
ARM

© Copyright Khronos Group 2014 - Page 2

U

NOS

KHROS

The story so far...

e Prehistory
- Growing recognition that OpenGL needs a reboot

e June to August 2014
- Next Generation OpenGL project launch
- Unprecedented commitment from all sectors of the industry
- Project disclosure and call for participation at SIGGRAPH

« Since then...

- Intense focus and a lot of hard work
- Vulkan unveil at GDC 2015

© Copyright Khronos Group 2014 - Page 3

U

NOS

KHROS

Outline

« Welcome - Tom Olson, ARM

e Introducing Vulkan - Johan Andersson, EA

« High Level Concepts in Vulkan - Pierre-Loup Griffais, Valve

» Going Wide: Vulkan and Many Threads - Dan Baker, Oxide Games

« Vulkan Binding Model - Niklas Smedberg, EPIC Games

« Shaders and Programs and Binary Oh My! - Aras Pranckevicius, Unity

o It's Dangerous to Vulkan Alone—Take These - John McDonald, Valve

© Copyright Khronos Group 2014 - Page 4

But first... —_—

MEDINTEK
C [UALCOMV\
SONY ,00gle
Apple
PIXAR PR Puimsunce >
NVIDIA.
Qunity AMDAQ |
ARM
o it Q7
v A L V E "HI CORP. Intel Imaglnatlon
© Oculus VR ! -
o
m: @ TRAIP;JSGA\P:ING @ ’a VIVANTE
: e
Z’ OXIDE
© codeplay*

e Huge thanks to the whole Vulkan team!
- New members are always welcome

KHRO

© Copyright Khronos Group 2014 - Page 5

!l l

)
tw 4/ "M

INTRODUCING +
VULKAN

JOHAN ANDERSSON \\)3 ! o’
ELECTRONIC ARTS

FROSTBITE

STATE OF THE INDUSTRY

» Consensus around explicit low-level graphics APIs!
» Mantle pioneered & led the way
» Proven with multiple engines & full games

» DX12 & Metal further contributed

Y
\}\,{'}"‘}';‘ 4
<

FROSTBITE

NEED A STANDARD

» Work on all (modern) GPUs

» Supported on all platforms — desktop & mobile

» Developed together — not owned by a single platform / vendor

» Extensible - avoid explosion of platform- or vendor-specific APIs

» Binary intermediate representation for shaders

FROSTBITE

VULKAN

» Based on Mantle — standardizes & replaces it

» Explicit control & extremely low overhead

» Designed to be efficient on a wide set of GPUs

» Advanced concepts:
» Multi queue & multi device
» Tile-based passes & load/store operations
» + Much more!

» Frostbite will transition our Mantle renderer to Vulkan

FROSTBITE

VULKAN FOUNDATION

» Unprecedented collaborative rapid development in Khronos
» Game engine developers
» Software developers
» GPU vendors
» Platform vendors

» Building a powerful foundation for the industry going forward!

FROSTBITE

High Level Concepts in Vulkan

Pierre-Loup Griffais

VALVE

The soul of Vulkan

Brand new API

Built with multi-threading in mind

Works everywhere

Greater control over memory management
Less hidden work and overhead in the driver
- Smaller drivers, better driver quality

With great power...

More developer responsibility

No runtime error validation

CPU synchronization around common objects
CPU/GPU synchronization

GPU memory hazards

With great power...

More developer responsibility

No runtime error validation

CPU synchronization around common objects
CPU/GPU synchronization

GPU memory hazards

Tools and validation suites to help developers
John will talk more about this later

Scheduling work in Vulkan

Queues and command buffers

Command buffers are built on many threads
Every command buffer is self-sufficient
Scheduled into GPU queues

Shaders in Vulkan

SPIR-V, brand new binary shading language
Easy and fast to consume by the driver
Makes offline shader compilation possible
Spec and GLSL compiler available TODAY

Vulkan is here

Valve driver for Intel GPUs developed along the spec to help ISVs
bootstrap their code

Source 2 supports Vulkan alpha today
Spec and drivers coming later this year
Intel/Linux driver will be open-sourced

Vulkan supported across the board on Steam Machines

14 OKIDE GAMES

1% OXIDE GAMES
(OXIDE]

2008 2009 2011 2012

14 OKIDE GAMES

14 OKIDE GAMES

* Caller Side Synchronization Threading

* Previous generation APIS bullt on either single threaded or

client/server thread designs

r

* Advantageous it application does not make good use of
multiple cores

Hugely problematic It application is truly threaded

ﬁ i

18 OKIDE GAMES

+

Application will not make conflicting calls on the
same objects (e.g. writing one object while another

is reading it)
Driver will generally not lock or serialize any API call

— Context information is embedded on the object

being operated on
— With exception to occasional CPU side memory
allocation (but should be rare occurrence on

create calls)

2
]
g
=
)
¥
s
4
Z
&
<.
o
i
.
2.
o)
4
o]
L
&
2
*.
)
3
:

14 OKIDE GAMES

14 OKIDE GAMES

14 OKIDE GAMES

~ In General, API function calls : her
* With exception to calls which must allocate some types of memory

16 OKIDE GAMES

PRysics Jol Sl Joo & S Jog B i Joo
PRYSICSJon SITINEL;
PhysicsJol Sl Joo Sigs) Jog

GdNiE! - . o :
== Al Job Al Job Sien Jog Siea) Jelo)
Je)o)

Game Game
Job

Siee) Jae SN

Grapnics (Opague; inanver)

16 OXIDE GAMES

= Windows Task Manager = =on -}
File

N

N «\ A \
N \ W e
N — -
Pre-Alpha Build

B 4
\ AN s

I

Driver related cores. Missing time due to thread accounting and system level synchronization
primitives

Lots of unused CPU space! Engine is just waiting for driver to be done

14 OKIDE GAMES

N N O

SIMPE O SITIN O STTIN O Sierl Joe

{ C > .
T T

Vulkan CViD:

Jon)

Vulkanr CIVID)
Joje)

Cizlpn)2
Jejo)

R T T

Sief Joo

VulkaniCvib:
ife)e)

Valkans CVID,
ife]e)

T

Siern oo Sier) oo

e

Sien Joo

VulkaniCivib)
Jon)

Valkans CViD,
Job!

Sier) Joo Sier Joe

&

SIMNE]

VulkanrCVib,
fe)o)

VulkansCIVID)
ife)e)

Sien Joo Sl Joo Sien Jog

Sier Joe

St Joo

Sien Joo

ValkaniCivip:
fe)o)

Valkans CVID!
ife)e)

R

Ll

Vulkan CviD:
JoJe)

ValkansClVID)
ojo)

EndiorErame

VikpresentJob

\z

18 OKIDE GAMES

yaical Memory Usage

e - =3 : 4
Ay WY
- > = -
o e
e -
- 3y £

] s] T e
T R 5
— . SINGULARXRITY
v - - - Pre-Alpha Build
)
e)
- ™
Rl &
({ 3

Vulkan simulation using a modified Mantle build to simulate infinitely fast GPU

14 OKIDE GAMES

Vulkan Binding Model

Niklas “Smedis” Smedberg

Senior Engine Programmer, Epic Games

 UNREAL

ENGINE

Goal

» Efficiently bridge the gap
— Traditional fixed hardware bindings
— Bindless-like operation

 UNREAL

ENGINE

Overview

* Shader uses a Descriptor to access a resource
— Resources: Sampler, Image, Buffer

* Descriptors are grouped into DescriptorSets
— DescriptorSet is bound as a single unit
— Shader bindings described by DescriptorSetLayout

* Shader has multiple DescriptorSet binding slots
— Described by DescriptorSetLayoutChain in PSO

UNREAL

ENGINE

DescriptorPool
* DescriptorSets are allocated from a DescriptorPool

* One-shot:
— Allocate until DescriptorPool is full, then clear entire pool
— Ultra-fast allocator: great for ring buffering DescriptorSets

* Dynamic:
— Out-of-order allocation/delete of DescriptorSets

UNREAL

ENGINE

Multithreading

* Update Descriptors on any thread

* Pre-alloc DescriptorSets of a common DescriptorSetLayout
— Update existing DescriptorSets, avoiding alloc/free

 Update descriptors:
— By copy (driver schedules the update)
— Immediately (promise no synchronization is needed)

UNREAL

ENGINE

DescriptorSetLayoutChain

* Ordered by binding frequency (lowest first)
— Fast switching between similar DescriptorSetLayoutChains
— Low-frequency bindings are persistent

 For example, two PipelineStateObjects:
— PSO A using Chain S: {LayoutX, LayoutY, LayoutZ}
— PSO B using Chain T: {LayoutX, LayoutY, LayoutW}

* When binding PSO B after using PSO A:
— Only bind Set for LayoutW
— Sets in {LayoutX, LayoutY} persists

UNREAL

ENGINE

Extra Features

* Bind DescriptorSets to all or any subset of pipeline stage

* High-frequency buffer offsets for UBOs and SSBOs
— Can be provided at DescriptorSet binding

* Flexibility with samplers. APl supports:
— Separate {sampler},{texture} descriptors
— Combined {sampler,texture} descriptors
— Immutable samplers specified in DescriptorSetLayout

UNREAL

ENGINE

KHRCONOS

Shaders and Programs and
Binary Oh My!

Aras Pranckevicius
Graphics Plumber, Unity

NOS

KHROS

TL;DR

« SPIR-V
e It’s bytecode!
» Well, that’s it :)

© Copyright Khronos Group 2014 - Page 43

U

NOS

KHROS

Improvements

« Half of the world is not even using GLSL!
- Allow more source languages

* No need for full compiler stack in every driver
- Solves different frontend bugs/performance

« Solves IP issues for some usages

© Copyright Khronos Group 2014 - Page 44

U

NOS

KHROS

SPIR-V

- Standard Portable Intermediate Representation

e Core for Vulkan
- Supports GLSL

 Core for OpenCL 2.1
- Supports CL 1.2, 2.0, 2.1 C/C++

» Allows conversion from/to LLVM IR

© Copyright Khronos Group 2014 - Page 45

NOS

KHROS

SPIR-V

« Highly regular binary representation

 Higher level than other shader IRs
(D3D)
- No register alloc
- No packing into float4
- Hierarchical type info preserved
- Structured flow control preserved

» SSA for all intermediate results
- Load/Store for 10

" SPIOA JO WeaNS

32 bits

. |

<id>is 3

© Copyright Khronos Group 2014 - Page 46

U

NOS

KHROS

Splitting the work

« Offline
- All frontend work
- Some optimizations

e Load Time
- Conversion to GPU code, regalloc, sched

 Vulkan
- No hidden recompiles (full state specified)
- Can save/load final pipeline objects

© Copyright Khronos Group 2014 - Page 47

U

NOS

KHROS

Source Languages & IRs

 Multiple possible (GLSL & CL out of the box)
e Built-in function sets separate from core spec

« Convertible to other ILs without data loss
- SPIR-V -> LLVM -> Optimize -> SPIR-V

© Copyright Khronos Group 2014 - Page 48

U

NOS

KHROS

Misc
- Extensible: can import new instruction sets & semantics

- Debugging: can annotate anything with text/file/line

e All instructions encode their size
- Tools can skip over unknown extensions easily

© Copyright Khronos Group 2014 - Page 49

U

NOS

KHROS

Call to shader action!

» Go write your own parser/compiler

- Specification and reference GLSL->SPIR-V
- Available right this second!

 Other shading languages?
- Should be possible™

© Copyright Khronos Group 2014 - Page 50

It' s Dangerous to Vulkan Alone—Take These
John McDonald

VALVE

Efficient Development

Layered API
Official SDK
Other Tools

Layered API?

Vulkan consists of multiple layers
The bottom-most layer is driver—the top-most is the application

Application developer chooses which layers are active
Proportional Taxation: Inactive Layers are completely free

Application

Driver

Layered API?

Vulkan consists of multiple layers
The bottom-most layer is driver—the top-most is the application

Application developer chooses which layers are active
Proportional Taxation: Inactive Layers are completely free

Application

Optional* -
Optional
Optional

- Driver

Types of Layers

Active (application requested)
Debug
Validation
Performance

Passive (injected via third party)

Steam Overlay
FRAPS

Types of Layers

Active (application requested)
Debug
Validation
Performance

Passive (injected via third party)
Steam Overlay

FRAPS ek
Layers can be OSS (all Official Layers are OSS)
Or Proprietary

RAD Game Tools’ Telemetry Layer

Vulkan SDK

Official SDK with BSD/MIT Open Source License directly from Khronos

SDK Includes
Loader
Header / Build Scripts per platform
Official Layers

Loader?

Expected that platforms will ship a default loader
You can use this if you choose

But applications can ship a private version as well
Allows you to work around bugs
And avoids the opengl32.dll problem

The Loader is actually just another Layer!

You could opt-out of using the loader, but it's usage is highly
recommended

Official Layers

The complete list of layers is TBD, but the current expectation is roughly:
Loader
Validation
Reference Counting
Performance Linting
Debug
Thread Safety
Trace Capture & Replay

Above may change, of course

Additional SDK Includes

Scripts to trivially generate your own layers
Useful for tracking down app-specific bugs
And helping build a richer ecosystem

Open Source Intel Driver
For Linux/SteamOS
Used in today’s demos

GLSL->BIL Compiler

Conformance Testing

Open Source Conformance Testing!

Allow developers to easily verify an implementation they are running on
And see examples of feature usage in real code

Ensure your application is covered by submitting usage cases back to
Khronos

Patches Welcome

3rd Party Tools

Introducing GLAVE, an Open Source Debugger for Vulkan
Effectively VOGL, but for Vulkan

Developed in parallel with the API
Expected to ship with the API

Questions?

Come ask questions at Khronos sessions today
SF Green Space
657 Mission Street Suite 200 (5 minute walk)
12-1:30 (First Session)
2-3:00 (Second Session)
All Technical Questions are fair game!

Tom Olson: @thekhronosgroup
Johan Andersson: @repi
Pierre-Loup Griffais: @plagman

Niklas Smedberg: @EpicGames

Dan Baker: @danbaker, @oxidegan
Aras Pranckevicius: @aras_p

John McDonald: @basisspace

