
Performance Lessons from Porting Source 2 to Vulkan

Dan Ginsburg

Overview

 Dota 2 Vulkan Performance Results

 Performance Lessons Learned

Overview

 Dota 2 Vulkan Performance Results

 Performance Lessons Learned

Source 2 Overview

 OpenGL, Direct3D 9, Direct3D 11, Vulkan

 Windows, Linux, Mac

 Dota 2 Reborn

Dota 2 Performance Results - Disclaimer

 Not an ideal showcase for Vulkan

 Source 2 renderer is multithreaded, but…

 Dota 2 is only ~1500 draw calls per frame

 Allows DX/GL a frame of latency to avoid being

renderthread bound

 Does not (yet!) take advantage of:

 Baking descriptors

 Command buffer resubmission

Dota 2 Performance Results - Disclaimer

 Not an ideal showcase for Vulkan

 Source 2 renderer is multithreaded, but…

 Dota 2 is only ~1500 draw calls per frame

 Allows DX/GL a frame of latency to avoid being

renderthread bound

 Does not (yet!) take advantage of:

 Baking descriptors

 Command buffer resubmission

 Still very pleased with results!

Dota 2 Vulkan Performance – DX9 Latency

Frame Start Frame End

Dota 2 Vulkan Performance – DX9 Latency

Frame Start Frame End Present Issued

Dota 2 Vulkan Performance – DX9 Latency

Frame Start Frame End Present Issued

DX9 Latency: 3.8ms

Dota 2 Vulkan Performance – Vulkan Latency

Frame Start Frame End

Dota 2 Vulkan Performance – Vulkan Latency

Frame Start Frame End Present Issued

Dota 2 Vulkan Performance – Vulkan Latency

Frame Start Frame End Present Issued

Vulkan Latency: 0.4ms (!)

Dota 2 Vulkan – Latency Reduction

 Renderthread no longer a bottleneck

 Reduces “wallclock” time of frame

 Time from end of frame to present reduced by 3.4ms

 Really important for:

 Latency sensitive games (eSports)

 VR

Dota 2 Vulkan - Framerate

 Two timedemos:

 Typical Dota 2 Match

 High Drawcall Battle Scene

 Test system:

 NVIDIA TITAN X 356.45

 i7-3770k @ 3.50GHz

 Test settings:

 Resolution: 640x480 (CPU Perf)

 Highest Rendering Quality

 Vulkan/GL/DX9/DX11

Dota 2 Timedemo – Typical Dota 2 Match

Dota 2 Timedemo – Typical Dota 2 Match

182.95

170.55

188.5

128.1

FPS

NVIDIA TITAN X i7 3770k 640x480 356.45 - HQ

Vulkan OpenGL DX9 DX11

Dota 2 Timedemo – Battle Scene

Dota 2 – High Drawcall Timedemo

85.3

75.15 75.65

67.5

FPS

NVIDIA TITAN X i7 3770k 640x480 356.45 - HQ

Vulkan OpenGL DX9 DX11

Dota 2 Vulkan Performance - Overall

 Significant latency reduction

 Improved framerate in heavy scenes

 Only going to get better…

Overview

 Dota 2 Vulkan Performance Results

 Performance Lessons Learned

Overview

 Dota 2 Vulkan Performance Results

 Performance Lessons Learned

 Command Buffer Recycling

 Command Buffer Batching

 Redundant Call Filtering

 Updating Descriptors

 Pipeline Cache Usage

Command Buffer Recycling Overview

 At least one VkCommandPool per thread

 Recycling options:

 vkResetCommandPool – resets all command buffers in

pool

 vkResetCommandBuffer – reset single command buffer

 Reset can either recycle or release resources

Command Buffer Recycling

 Souce 2 recycles individual command buffers after

completion

 vkBeginCommandBuffer costly

 Using VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT

 Driver reallocates resources

 Done to reduce memory footprint, but came at perf cost

Fast Command Buffer Recycling

 vkCreateCommandPool

 Use VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT

 vkResetCommandBuffer(pCmdBuffer, 0)

 flags == 0, keeps resources for reuse

 Downside: memory growth

 Source 2 strategy for handling memory growth:

 Destroy command buffers no longer needed

 Heuristic to destroy command buffers

Command Buffer Batching

 vkQueueSubmit implies a flush

 Also has CPU costs – memory residency

 Important to batch submits

Command Buffer Batching

Command Buffer Batching

Batched submit: ~0.7ms / frame

Command Buffer Batching

Batched submit: ~0.7ms / frame Unbatched submits: ~4.5ms / frame

Source 2 Command Buffer Batching

 Gather command buffers on renderthread

 Up to a threshold, needed during load time

 Wait for present request

 Issue single submit with all batched command buffers

Redundant Call Filtering

 Your job now!

 Vulkan drivers may not (should not!) filter calls

 If we don’t do it, we will force IHVs to

 Hurts the good apps at the expense of the bad

 Examples from Source 2:

 vkCmdBindIndexBuffer

 vkCmdBindVertexBuffers

 vkCmdBindPipeline

 Dynamic render state

 vkCmdSet*

Updating Descriptors

 vkUpdateDescriptorSets #1 hotspot

 vkCmdBindDescriptorSets #2 hotspot

 Source 2 approach:

 Single pipeline layout shared across all pipelines

 Descriptor sets will have unused entries

 Update/bind descriptor set per draw

 Not efficient!

Updating Descriptors – The Right Way

 In shaders, organize descriptor sets by update

frequency

 Bake descriptor sets up front

 Use compatible pipeline layouts to simplify descriptor

allocation

Updating Descriptors – The Right Way

 In shaders, organize descriptor sets by update

frequency

 Bake descriptor sets up front

 Use compatible pipeline layouts to simplify descriptor

allocation

 …we plan to do this in the future. Will help perf a lot.

Pipeline Creation

 vkCreateShaderModule is relatively fast

 Loads in the SPIR-V, no heavy compilation

 ~0.01ms in Dota 2

 vkCreateGraphicsPipelines is expensive

 Driver performs shader compile here

 0.2 – 152ms in Dota 2 before cache is warmed

Vulkan Pipeline Cache

 Serialize compiled pipelines to disk

 Preload to remove first-time stutters

 Header contains VendorID/DeviceID/UUID

 Otherwise opaque format

 Avoid unnecessary shader compiles

 Driver de-duplicates

 Only driver knows when recompile is needed based on

state

 Pipeline cache should contain only unique pipelines

 Allows compilation on multiple threads

 Merge later using vkMergePipelineCaches

Summary

 Dota 2 Vulkan Performance Results

 Reduced latency

 Improved framerate in expensive scenes

 Performance Lessons Learned

 Command Buffer Recycling

 Command Buffer Batching

 Redundant Call Filtering

 Updating Descriptors

 Pipeline Cache Usage

Questions?

