
Good morning everybody! Thank you for attending my talk today! 
My name is Dirk Gregorius and I am a software engineer at Valve. 
My talk today will be about robust contact creation for physics simulations. 
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Let’s start with a quick outline of this talk: 
- After a short introduction we will define what contact points and contact 

manifolds are and how to use them to model contact in a physics engine  
- We will then define some basic shapes commonly used in physics engines and how 

to compute robust and stable contact manifolds between them. This will build the 
major part of this talk! 

- The method I will show today can produce many contacts points per frame and we 
might not want to send all these contact points to the solver due to performance 
reasons.  

- The ultimate goal is a fast, stable and plausible simulation and I will show you how 
to efficiently approximate any number of contact points with a stable manifold. 
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Let’s quickly look at the anatomy of a physics tick: 
- We use the broadphase to detect pairs of shape proxies that can potentially be in 

contact  
- E.g. in an AABB tree we detect all overlapping AABB pairs 
- In the narrowphase we then need to test if the actual collision shapes are touching 
- If the shapes are touching we create contact information between the two shapes 

and send this to the solver 
- Finally the solver then advances the rigid bodies and uses the provided contact 

information to prevent penetration and to simulate friction 
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The topic of this talk today is a complete breakdown of the narrowphase: 
- We will cover how to detect whether the two internal shapes of two overlapping 
proxies are actually touching and how to create the contact information between 
them that we pass to the solver! 
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Let’s get started! What does contact actually mean? 
- Obviously contact occurs when two shapes are touching! 
- Note that the picture above shows a more or less ideal contact situation 
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In reality we will most likely deal with overlap and also need to handle penetration! 
- It is actual crucial for a decent physics engine that it can handle penetration 

efficiently 
- Ideally there should be no performance penalty in the overlapping case and the 

rather ideal touching configuration is just a special case with zero penetration 
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We start with some basic definitions. A contact point is defined by: 
- A position (indicated by the red dot) 
- And a penetration depth (d) 
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Now we can define a contact manifold simply as a set of contact points that share a 
common normal! 
- Note that I assume here a maximum of four contact points in a manifold 
- This is an optimization since four points are usually enough for fast, stable and 

robust contact simulation 
- I will show you at the end how we can efficiently reduce larger sets of contact 

points down to a maximum of four 
- Please don’t get miss-leaded by the picture here! In 2D two contact points would 

be indeed sufficient, but in 3D we need at least four contact points! 
 

The solver usually expects the normal to have a specific orientation. E.g. from A to B 
or from B to A. So you need to make sure to create a consistent orientation when 
building the manifold! 
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Let’s now quickly recap how we solve contact points in a physics engine to bring us all 
on some common ground here: 
- We need to handle contact to prevent penetration and to simulate friction 
- In a game physics engine we usually simply solve each contact point individually 

using some iterative approach (e.g. Sequential Impulse or Projected Gauss-Seidel)  
 

So what do we do with the contact information? 
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First we compute the relative velocity at the contact point in the direction of the 
normal: 
- A negative relative velocity means that the two bodies are penetrating  
- A positive relative velocity means that the bodies are separating 
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Next we apply equal and opposite impulses in the direction of the normal to drive a 
negative relative velocity to zero: 
- Obviously our ultimate goal is to resolve all negative (penetrating) velocities as this 

will prevent further penetration 
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Finally we also need to resolve the penetration. We have two options here: 
- Instead of driving the velocity to zero we can target for a small separating velocity 

proportional to the penetration depth per tick (exponential decay) 
- This is called Baumgarte stabilization 

 
Alternatively we can run a full solver sweep over the contacts again, but now solving 
the position error directly 
- This is called position projection 

 
Contact solving is not the topic of the talk today, but hopefully this gives you an idea 
how the contact information might be used in the solver. 
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Now let’s continue with the basic strategies for creating contact points 
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In order to model contact in our engine we need a contact point location, a contact 
normal and the penetration depth. There are two basic approaches to find contact 
points: 
1) The incremental approach tries to find one contact point per frame and adds it to 

a persistent manifold.  
2) The one-shot approach detects the closest features and finds all contact points of 

a manifold in one frame using clipping techniques 
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The basic idea is to inflate your collision shapes by a small margin and then use e.g. 
GJK to compute the closest points between the core shapes. 
- This gives you the contact point and normal 
- The penetration depth is the margin minus the distance between the closest 

points  
- The new contact point is then added to a persistent manifold 
- Old contact points need to be confirmed (e.g. using some distance heuristic or 

feature IDs) 
 

Obviously this will only work if the core shapes don’t overlap. 
If the core shapes are actually overlapping we fallback onto some other algorithm 
(e.g. EPA, SAT, MPR, or brute force sampling) 
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Let’s have a quick look how the incremental manifold is constructed over several 
frames now: 
- As you can see there are some potential issues with this approach 
- Since we only find one contact point at frame 1 we introduce an artificial torque 

which can actually be quite noticeable to the player 
- Also note that we continue penetrating in the next frame since we need several 

frames to construct a stable manifold  
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In the worst case (depending on the geometry of our shapes) objects might even 
rotate out of the world! 
- If this is a simple debris object this might not matter 
- If it is key to reach the level exit it is a AAA bug 
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So what is a stable contact? 
- A contact manifold is stable if the center of mass projects inside the manifold.  
- Obviously we need (at least!) up to four frames to construct a stable manifold 

using the incremental approach 
- Let’s look into this in a bit more detail 
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We find the first point: 
- This is obviously unstable as we can rotate freely around the first contact point 
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Now we find a second point across the diagonal: 
- This is still unstable as we can rotate around the axis through the two contact 

points across the diagonal 
- Think of a hinge here if you like 
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We find a third point which is still unstable as we can still rotate around the axis 
through the two contact points across the diagonal 
- Note how the center of mass projects onto the edge of the manifold in this case 
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Finally a stable manifold after a minimum of four frames.  
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Summary: 
- Incremental manifolds are a great and simply solution.  
- Many games have shipped successfully with this approach  
- Hopefully this summary helps you to make an educated decision understanding 

the limitations of this approach and if this is the right solution for your project! 
 
The remainder of the talk will be about the construction of one-shot manifolds. 
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To construct a one shot manifold we try to detect the touching features (e.g. using 
the SAT) 
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And then we clip one feature against the side planes of the other to find all contact 
points 
- The contact points come obviously from clipping procedure 
- And the normal and penetration from the touching features 
- This is just the basic idea and we will cover all the fancy details in the talk! 

 
Note that we didn’t use any margin here though we definitely could! 
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Now let’s have a look at the one-shot manifold approach over several frames: 
- As you can see the one-shot approach finds both contact points at frame 1 when 

the two shapes start touching. 
- Hence there is no-artificial torque and also no stability issues due to rotations 
- Since all contact points are found  at frame 1 the object is stopped from 

penetrating further in the next frame 
- Also note how the penetration recovery can start working immediately 
- This helps a lot with removing visual artifacts like spongy contact points 
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So now that we know what a contact is let’s look at some common shapes and how 
to compute stable contact points between them in detail! 
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In Rubikon we support four different kinds of collision shapes:  
- Spheres 
- Capsules 
- Convex Hulls 
- Triangle Meshes 
 
 

28 



A sphere in Rubikon is defined by a center point and radius 
- There is no shape transform and the center point is considered to be local to the 

parenting rigid body (or any other parent if used in a different context) 
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Similarly a capsule is defined by two center points and a radius 
- Again there is no shape transform and the center points are considered to be in 

the local space of the rigid body again 
- The nice thing about this definition is that you don’t have to deal with any up 

direction  
 

In the upcoming slides I will quite often refer to the inner segment of the capsule 
- The inner segment is defined by the two center points 
- Similarly to thinking of a sphere as a point with radius, I like to think of a capsule as 

a segment with a radius 
 
As a side note: 
- It is very easy to setup collision capsules for ragdoll limbs this way.  
- For legs and arms you simply snap the two center points to the bone pivots and 

scale the radius. Done! 
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The main collision shape in Rubikon is the convex hull. 
- The convex hull is defined by a set of vertices in the local space of the parenting 

rigid body.  
- We also store topological information for the hull like edges and faces (e.g. using 

the half-edge data structure)  
 
As you might have noticed Rubikon doesn’t support cylinders or cones.  
- If needed, we describe those as reasonably tessellated convex polyhedra 
- Rubikon also has no special box shape as this can be efficiently handled as convex 

hull with the methods I will show you today 
- You should target for your convex hull performance such that a hull with 8 vertices 

and 6 faces shows similar performance characteristics as a specialized box shape! 
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The final collision shape in Rubikon is the triangle mesh 
- We define the triangle mesh as a set of vertices and faces 
- Again vertices are defined relative to the parenting rigid body 
- Triangle meshes are usually used to describe the static geometry in a game level 
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Rubikon supports all interactions between the introduced shapes but mesh vs mesh: 
- Mesh vs mesh is pretty expensive to solve robustly in real-time applications  
- Good methods exist to solve this problem (e.g. SDF), but will not be covered in this 

talk today.  
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Contact creation (as presented here) makes heavy use of two well-know algorithms: 
GJK and SAT 
- Both have been discussed in the physics tutorial exhaustively before and we 

cannot go into detail here today 
- Luckily the essential outcome is easily explained and you can go back to earlier 

presentations for an in-depth explanation 
- I put reading suggestions into the reference section 

 
There is another an algorithm called the Expanding Polytope Algorithm (EPA), but we 
will not discuss it here today! 
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Let’s quickly recap GJK. GJK is this fancy algorithm which uses support functions, 
Minkowski Sums, Simplex Solvers and what not else. How this all works is not the 
topic today and all we really need to remember is: 
- GJK is an algorithm which computes the closets points between two disjoint 

convex shapes 
- Disjoint is the important thing to remember here! 
- If the two objects are touching or even penetrating GJK gives no (immediate) 

result we can use  
- For the remainder of this talk we treat GJK as a black box which can solve the 

distance problem between two convex shapes for us! 
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The SAT is pretty fancy as well and uses techniques like Minkowski Sums, Gauss 
Maps, and many more to find a finite set of planes we need to test for separation.  
Again we don’t care for the details here and treat the SAT as a black box as well. If we 
cannot find a separating axis the SAT will tell us things like: 
- The direction in which we need to resolve the penetration (Axis of Minimum 

Penetration) 
- The minimum penetration distance 
- The touching features  
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We start with the collision between the convex shapes (e.g. sphere, capsule, and hull) 
- The contact between these shapes is usually well defined by a single manifold 
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We start simple with sphere vs sphere! 
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First we need to detect whether the two sphere shapes overlap using a simple 
distance function: 
- Two spheres overlap if the distance between the center points is less or equal than 

the sum of the radii 
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If we detected overlap we need to create a contact manifold: 
- In the case of sphere vs sphere one contact point is sufficient 
- For sphere vs sphere I place the contact into the middle of the two surface points 

(not the middle of the two center points!) 
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We also need a normal direction. 
- The normal is simply the normalized difference of the center points 
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Finally we need to compute the penetration depth: 
- The penetration depth is simply the distance between center points minus the sum 

of sphere radii: d = |C2 – C1| - r1 – r2 
- We essentially just evaluate our distance function 
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We also need to handle one degenerate case: 
- If the spheres are coincident we cannot compute a normal with the approach 

described above 
- If these happens we simply choose the global up axis as our normal direction (or 

anything else that makes sense in your context) 
- Note that it is also valid to create no contact at all in the degenerate case.  
- An arbitrary normal can be the wrong choice and this usually only happens if 

entities are spawned on top each other in the game!  
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This was easy! The next pair we will investigate is sphere vs capsule. 
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The sphere overlaps the capsule if the distance of the sphere center to the closest 
point on the inner capsule segment is less or equal than the sum of the radii 
- Note that there is no need to distinguish between different regions of the capsule 

(e.g. the caps or the cylindrical body of the capsule) 
 

45 



Creating the contact point is now similar to sphere vs sphere: 
- We can conceptually create a virtual sphere around the closest point L and build the 
contact information as before 
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- We put the contact location into the middle of the two surface points (not the 
middle of the center and closest point on segment!) 
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- The normal is simply the normalized difference vector of the sphere center and the 
closest point on segment 
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- Finally the penetration depth is simply the distance between the center point and 
the closest point on the segment minus the sum of the radii: d = |L – C| - rs – rc 

- Again we are simple evaluating our distance function 
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Again we also need to handle one degenerate case here: 
- If the sphere center is exactly on the inner segment we cannot compute a normal 
- In this case we can choose any direction which is perpendicular to the inner 

capsule segment 
- Again an arbitrary normal can be the wrong choice and it is also valid to ignore this 

case. 
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Not to difficult as well. Let’s continue in our collision table with sphere vs convex hull. 
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The sphere overlaps the hull if the distance of the sphere center to the hull is less or 
equal than the sphere radius 
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As mentioned in the beginning we are equipped with two basic algorithms: GJK and 
SAT 
- The GJK can handle the configuration when two convex shapes are disjoint 
- The SAT can handle the configuration when two convex shapes are overlapping 
- Hence we need to distinguish two situations: Shallow and Deep Penetration 
- Shallow penetration is when the sphere center is outside of the hull, but the 

distance is less than the radius 
- Deep penetration is when the sphere center is contained inside the hull  
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We start assuming that the sphere center is outside the hull using GJK: 
- If GJK succeeds and reports a distance less than the radius we built a shallow 

contact point  
- If GJK fails we assume that the sphere center is inside the convex hull and run a 

SAT 
- Note that we use GJK with the sphere center and not the sphere itself here! 
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Building a shallow contact point is easy: 
- The contact point is simply the closest point on the hull (returned from GJK) 
- The contact normal is the difference between the closest point on the hull and the 

sphere center 
- The penetration depth is the distance between the closest points minus the sphere 

radius: d = |C - L| - r 
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If GJK fails the sphere center is contained inside the hull and we need to run a SAT to 
find the axis of minimum penetration 
- This case is actually quite simple and the possible separating axes are only the face 

normals of the convex hull 
- The face with the smallest distance to the sphere center defines the axis of 

minimum penetration 
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Building a deep contact point is straight forward: 
- The contact point is the projection of the sphere center onto the minimizing face 
- The contact normal is simply the normal of the minimizing face 
- The penetration depth is the distance of the sphere center to the minimizing face 

minus the sphere radius: e =  d(P, c) - r  
 

Note (if you ae concerned about the correct signs): 
- The distance of the sphere center to the face plane is negative as the center point 

is behind the plane! 
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Things get a little bit more exciting, but still everything is pretty straight forward. Let’s 
step down one row in out collision table and look into capsule vs capsule. 
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Two capsules overlap if the distance between their inner segments is less or equal 
than the sum of their radii! 
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Once we have the closest points we can build virtual spheres around the closest 
points again and think of this as sphere vs sphere. 
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As for sphere vs sphere we put the contact into the middle of the two surface points 
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 The normal is simply the normalized difference of the two closest points 
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Finally we need to compute the penetration depth that we need to resolve the 
overlap: 
- The penetration depth is simply the distance between the closest points minus the 
sum of the radii: d = |L2 – L1| - r1 – r2 
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We need to also handle one degenerate case: 
- If the inner segments overlap we cannot compute a normal 
 
We need to distinguish two cases here: 
- If the segments are not parallel we can use the cross product to find a normal 
- Otherwise we can choose any direction which is perpendicular to any of the two 

inner capsule segments 
- Again skipping this case is a valid option as an arbitrary normal can be the wrong 

choice! 
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Now assume we actually would like to stack capsules in our game: 
- In the parallel case we might want to consider to create two contact points 
- So before we run the test shown earlier we test whether the two capsules can be 

considered parallel 
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If we detect two parallel capsules we try to create two contact points using clipping: 
- We clip the inner segment of the second capsule against the side planes of the 

inner segment of the first capsule 
- Then we keep the points whose distance to the first segment is less that the sum 

of the radii 
- Finally we shift the clipped points to the middle of the associated surface points 
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Finally we created more than one contact point for this first time. So things start 
getting to be a bit more involved. Let’s move on with capsule vs convex hull! 
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The capsule overlaps the hull if the distance of the inner capsule segment to the hull 
is less or equal than the capsule radius 
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As already learned in the sphere vs hull case we need to distinguish between shallow 
and deep penetration: 
- We need to handle shallow penetration if the inner capsule segment is outside of 

the hull, but the distance is less than the radius 
- We need to handle deep penetration if the inner capsule segment is intersecting 

the hull  
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We start assuming that the inner capsule segment is outside the hull using GJK: 
- If GJK succeeds and reports a distance less than the radius we built a shallow 

contact point  
- If GJK fails we assume that the inner capsule segment is inside the convex hull and 

run a SAT 
- Note again that we use GJK with the inner capsule segment and not the capsule 

itself here! 
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Building a shallow contact point is easy: 
-   Once we detected the closest point we can again build a virtual sphere around it 
and use the same ideas as before for sphere vs hull 
- The contact point is simply the closest point on hull (returned from GJK) 
- The contact normal is the normalized difference between the closest points 
- The penetration depth is the distance between the closest points minus the 

capsule radius: d = |C - L| - r 
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If GJK fails the inner capsule segment is contained inside the hull and we need to run 
a SAT to find the axis of minimum penetration 
- The possible separating axes are the face normals of the convex hull and the cross 

products between the inner capsule segment and the edges of the hull 
-   This is where things get a bit more involved now, but luckily this case should not 
happen too often in practice! 
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For building a deep contact we need to distinguish two cases: 
- The first case is if the axis of minimum penetration is a face normal 
- The second case is if the axis of minimum penetration is the cross product of the 

inner capsule segment and one of the hull edges  
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Let’s start with the simple case if the axis of minimum penetration is associated with 
a face of the convex hull: 
- In this case we simply clip inner capsule segment against the side planes of the 

minimizing face 
- The normal comes from the plane of the minimizing face 
- And the penetration depth is the distance of the clipped points to the minimizing 

face minus the capsule radius 
- Finally we project the clip-points onto the minimizing face 
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Now let’s investigate the case if the axis of minimum penetration is realized by the 
cross product of the inner capsule segment and an edge of the convex hull: 
- We compute the closest points between the minimizing edges and choose the 

contact point in the middle 
- The normal and penetration depth come directly from the SAT 
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I created a screenshot of deep capsule penetration as this might be difficult to 
imagine from the 2D sketches: 
- The slide shows two capsules (side) in deep edge contact and one capsule (middle) 
in deep face contact 
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In the case of a deep face contact our algorithm produces two contact points. Since 
deep penetration should only occur very seldom we also like to create two contact 
points in a similar shallow contact configuration 
- In order to detect this case we need to iterate over all faces of the convex hull and 

check if our contact normal is parallel to a face normal.  
- If we succeed we call this the reference face! 
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In order to create two contact points we need to clip again: 
- We simply clip the inner segment of the capsule against the side planes the 

reference face as in the deep penetration case 
- The normal comes from the plane of the minimizing face 
- And the penetration depth is the distance of the clipped points to the minimizing 

face minus the capsule radius 
- Finally we project the clip-points onto the minimizing face again 
 
Note (if you ae concerned about the correct signs): 
- The distance of the clipped points to the reference plane is now positive as the 

inner segment is in front of the plane! 
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Finally we arrived at the last convex contact pair which will also be the most 
complicated one for today! 
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So far we detected overlap by defining a distance function 
- In the case of the two convex hulls we use a SAT based approach to detect overlap  
- Hence the two hulls overlap if there is no separating axis 
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Let’s recap the possible separating axes between two convex polyhedra: 
- The face normals of hull A 
- The face normals of hull B 
- The cross products between all edges of A and all edges of B 
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A simple SAT implantation then could the look like this: 
- Note that this is ‘open’ function and we continue it in a second! 
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For the face tests we build a plane for each face and find the support point in the 
opposite normal direction on the other hull 
- The distance of that support point to the plane is the separation or penetration for 

this axis 
- We perform this test for each face and keep track of the largest distance 
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In code this could look like this 
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Then for each edge pair we build the cross product between the two witness edges to 
get the possible separating axis 
- We build a plane through the edge on Hull A with the normal of the cross product  
- We need to make sure that we have a consistent normal orientation pointing away 

from A 
- Finally we check the distance as before finding the support point in the negative 

normal direction and compute its distance to the plane 
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We need a well defined normal direction to get the sign of the distance right 
- The normal must point away from hull A 
- We simply compare the normal against a reference vector from the center of the 

hull to any of the edge vertices  
- We flip the axis orientation if necessary 
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In code this could look like this 
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If we didn’t find a separating axis we can now check which feature realizes the axis of 
minimum penetration (e.g. Faces A/B or Edges) 
- If the minimizing feature is a face we create a face contact  
- If the minimizing feature is an edge combination we create an edge contact 
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We continue the implementation of our SAT function. On termination all query 
results are negative. 
- The axis of minimum penetration is realized by the feature with the smallest 
penetration! 
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If the axis of minimum penetration is a face normal we build a face contact: 
- Conceptually we clip the incident face on the other hull against the side planes of 

the minimizing face.  
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What does this mean? 
- We used the SAT to find the axis of minimum penetration 
- We call the minimizing face the reference face 
- Next we identify the incident face 
- The incident face is simply the most anti-parallel face on the other hull  
 
Implementation hint: 
- To find the incident face simply iterate all faces on the other hull and compute the 

dot product of each face normal with the normal of the reference face. The face 
with the smallest dot product defines the incident face!  
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Next we setup ourselves for clipping: 
- We clip the incident face polygon against the side planes of the reference face 
- Then we keep all points below the reference face 
- We can essentially use any polygon clipping algorithm for this (e.g. I use Sutherland 

Hodgman clipping) 
 
Note that we don’t clip against the reference face since the additional points will not 
add to the stability of the manifold. 
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Finally we move the contact points onto the reference face: 
- This helps with coherence and (as we will see later) with contact point reduction 
where we assume that the contact points are in common plane 
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If the axis of minimum penetration is realized by an edge pair the contact point must 
be the closest points between the minimizing edges! 
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Creating an edge contact is rather trivial: 
- For an edge contact we simply compute the closest points between the two 

witness edges 
- Then we choose the contact point in the middle of the closest points 
- We construct the normal the same way as we did for testing the edge separation 

(e.g. build the cross product between the edges and check the orientation) 
 

 
 
 

95 



Often many axes return the same penetration. Which normal is the axis of minimum 
penetration in the above example? 
- The solver likes coherent contact points as this improves stability, so we like to 

build our contact points from the same features between frames 
- The solution is simple and we apply a bias (or weighting) to prefer face contacts 

over edge contacts and one face axis over another 
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The clipping algorithm I showed you will not find the full manifold if coplanar faces 
are not merged correctly: 
- Hence coplanar faces will introduce instability into your solver 
- In the above example we would get an unstable triangle manifold since the 

clipping code only sees a part of the incident face 
- In the worst case you could even get an empty manifold  (e.g. for more 

complicated examples with many smaller coplanar faces) 
 

As a rule of thumb we want large faces and aim for sharp edges between adjacent 
faces (e.g. minimum angles of 10 degrees between faces) 
- Nearly coplanar faces will introduce fuzziness into your solver since it is not clear 

which face to rest on! 
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An important optimization of this technique is to utilize temporal 
coherence (e.g. store the result from the last frame) 
- If we detected a separating axis in the last frame we try this first in the 

current frame. Chances are high it will still be a separating axis and we 
have an early out! 

- If we detected overlap in the last frame we try to rebuild the contact 
from the last features again. Chance are high they still realize the 
contact manifold and we can skip the whole SAT! 

 
As a side note: 
- You should expect a speed-up by an order of magnitude or more if 

implemented correctly! So this is significant in practice and not just 
some theoretical idea! 

- Contact performance is not about SAT vs GJK, but to not call any of 
those geometric algorithms at all if possible! 

- Sergiy will talk about this later in the optimization talk, but the 
general idea is: If you don’t need to do it, don’t do it! 
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Finally we look into mesh contacts 
- As opposed to convex contacts there can now be many manifolds for each triangle 

the convex shape is touching 
- Luckily we can reuse all of the ideas we used to build the manifolds between the 

convex shapes earlier 
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The first step for mesh contacts is a mid-phase to collect all triangles the convex 
shapes can potentially overlap. 
- The can be easily achieved by a box query against the triangle mesh 
- Triangles are usually sorted in a tree for fast AABB queries so this is a fast test 
- Then for each potential pair (convex, triangle) we need to compute a contact 

manifold 
 

Luckily there is really nothing new here and we will reuse all the ideas we developed 
for the convex contacts! 
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The simple trick for the mesh contacts is to realize that we can treat each triangle as a 
convex hull 
- In order to make this work we treat every triangle as double sided 
- Now we can reuse all the functions we developed before and no special code is 

needed 
 

Is this really it?  
- Well, this talk will get you started and put you on the right track, but mesh 

contacts are really a talk on their own and there are many nifty details to consider 
- P. Terdiman actually just published a nice paper on mesh contacts which is a great 

introduction into this problem 
- I added a link to the reference section of this talk for your convenience 
 

101 



So now that we know how to compute stable and robust manifolds let’s have a look 
how to bring the contact point count down if a manifold is too complex! 
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The above slide shows the top-down view of two boxes resting on each other 
- The methods you learned today can produce many contact points (e.g. 8 in the 

above example)  
- For performance reasons we don’t want to send all contact points to the solver 

and limit ourselves to a maximum of four points! 
- Usually four contact points are efficient for fast, stable and robust contact 

simulation 
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Our goal is to find the combination of four contact points with the largest area that 
doesn’t destabilize the manifold! 
- The slide shows a set of four good and four bad points to illustrate the idea! 
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In order to reduce our manifold we will use an iterative approach.  
- Remember that we assume here that all contact points are in the same plane! 
- First we need to choose an initial point. 
- We can essentially start with any point, but we want to make sure that it is 

relatively coherent between frames 
- So a better solution than just using the point at index zero (which can change 

between frames) we can query a support point in fixed direction in the contact 
plane 

- If we are concerned about CCD and continuous contact solving we want to start 
with the deepest point and guarantee it is in our reduced contact set 

- For the sake of simplicity assume we start with the red point in our example here!  
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After we identified our initial point we simply search the farthest point from the 
starting point 
- In practice we compute the squared distance of course 
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For the third point we find the point which maximizes the area 
- For each remaining point we build a triangle with our current edge and compute 

the area 
- We can use the cross product to compute the area 
- Note that we use the dot product with the face normal here and not the absolute 

value  
- This saves us a sqrt() and also returns a signed distance which we can use to detect 

the winding of the triangle 

107 



Finally we want to add a fourth point which adds the largest area to our triangle 
- We use the same formula as before and check the remaining points with each 

edge of the triangle. 
- Note that we only consider triangles with a negative area as we are only interested 

in points on the outside of the edge in consideration 
 

Note: 
- Conceptually we are computing barycentric coordinates and keep the point with 

the smallest barycentric coordinate! 
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Let’s quickly check why this works. We test point Q with edge AB: 
- The area of the triangle ABQ is negative (CW winding) and we keep track of it 
- The negative sign simply means that Q is on the other side of AB as C which is 

what we want! 
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We continue with the next edge and test point Q with edge BC 
- The area of the triangle BCQ is positive (CCW winding) and we skip it 
- The positive sign means that Q is on the same side of BC as A which we are not 

interested in! 
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We continue to the final edge and test point Q with edge CA 
- The area of the triangle CAQ is positive again (CCW winding) and we skip it as well 
- Again the positive sign means that Q is on the same side of AC as B which we 

ignore! 
 

We repeat this algorithm with each remaining point and keep the point which adds 
the largest negative area to the current triangle! 
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When computing the fourth point your intuition might suggest to use the edge 
normals to find the furthest point from the triangle 
- In the above example this would indeed return the right answer, but let’s look at 
another example 
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In this example the remaining points have about the same distance from their closest 
edges 
- Finding the furthest point from an edge does not take the edge length into account 
 
So the simple rule is: 
- Maximize area, not distance! 
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An alternative to the algorithm presented before is to simply find the extreme points 
along two orthonormal axes in the contact plane (think AABB): 
- We first build an orthonormal basis (u,v) with the manifold normal 
- And then we find the extreme points along these axes 
- Note that the result is now dependent on the choice of your axes! 
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This approach can create wrong reduced manifolds though as the above example can 
hopefully illustrate. 
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What we really want in this case is something more along the lines like this! 
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So before we close let’s look at some code examples how a basic collision pipeline 
could be implemented. 
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When we detect a new pair we check the shape types 
- If both shapes are convex (e.g. sphere, capsule, or hull) we create a convex contact 
- If any of the two shapes is a mesh we create a mesh contact 
- If both shapes are a mesh we ignore the pair, but report a warning to the user 
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In order to invoke the correct collision routine based on the shape type we simply use 
a two dimensional array of function pointers 
- Note that the lower collision table does not need to be implemented due to 

symmetry!  
- As the order of the shapes in a pair is arbitrary we simply make sure that the first 

shape type is always larger than the second (e.g. in the constructor of the convex 
contact) 
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Dispatching the correct collision function for a mesh contact is even easier! 
- The 2D matrix becomes a simple linear array in this case which we simple handle 

in a switch block 
- Note that this is really easy and you don’t want to implement difficult dispatch 

mechanisms with unnecessary indirections for these problems here!!! 
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This closes the talk. Thank you! 
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Hopefully we have still some time left for questions! Please step forward to the 
microphones and tell us your affiliation! 
 
REMINDER: 
- Repeat questions for audience! 
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The Gauss Map for the capsule is simply a ring: 
- The IsMinkowskiFace() test becomes a simple plane test qualifying the two hull 

normals against a plane of the ring 
- Please refer to my GDC 2013 presentation for details! 
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