
GORDON SELLEY

TONY HOSIER
AMD GPU DEVELOPER TOOLS TEAM

OPTIMIZING LINUX GAMES FOR AMD

GRAPHICS USING GPU PERFSTUDIO2

• GPU PerfStudio2 is AMD's performance and debugging tool for

graphics applications

• Initially developed to support DirectX and OpenGL on Windows®

only

• Has recently been ported to Linux®

• Very useful when developing games for Steam Linux®

• Especially useful when optimizing games for AMD GPUs

• We are here to demonstrate GPUPerfStudio2 for Linux®

Background

• Introduction to GPU PerfStudio2

— What it is, what it does, how it works, & who uses it

— Usage configurations

• Using GPU PerfStudio2 for Linux

— How to use it with an OpenGL Linux® app

— Demonstration of the main tool features

• Data-mining your game using GPU PerfStudio2

— Demonstration with a Steam Linux® game

• What’s new?

• Summary

• Questions

Presentation Overview

INTRODUCTION TO GPU PERFSTUDIO2

What it is, what it does,

how it works, & who uses it

• GPU PerfStudio2 is AMD's performance and debugging tool for

graphics applications

• A suite of tools that can be used to debug and increase performance

on AMD GPUs

• Integrated Frame Profiler, Frame Debugger, and API Trace with

CPU timing information

• Supports OpenGL 4.2 applications on Windows®

• Supports DirectX® 11, DirectX® 10.1 , DirectX® 10

• Now supports Linux®

What is GPU PerfStudio2?

• A lightweight, no installer, no change to your game, drag and drop,

suite of GPU tools

• Run from a USB drive

• No need for Visual Studio integration

• Runs with game executables

• No special driver or compilation required

What is GPU PerfStudio2?

Frame Debugger

• Capture, play back and view the

contents of a frame

• Scrub through draw calls

• Visualize the GPU time for each

draw call

• View all game resources and

state bound at each draw call

• Inspect the resources at each

stage of the pipeline

• View, edit and debug shader

code

Frame Profiler

• Identify costly draw calls

• Detect GPU pipeline stage

bottlenecks

• Investigate performance issues

at the counter level

Shader Debugger

• Edit the live HLSL or GLSL code

inside your app while running in

the tool

• Debug the live HLSL or Assembly

code inside your app while running

in the tool
• Step through shader code

• Inspect all register values

• Insert and run-to break points

• Compare before and after edit

performance using the Profiler

API Trace

• Inspect all API calls (with

arguments)

• CPU timeline information for

each API call

• Visualize multi-threaded API

usage

• Supports DirectX®11 Command

Lists and deferred contexts

• Widely used by internal groups in AMD

— AMD Developer Technology Engineers: Optimize & debug game titles in conjunction with

developers

— AMD Driver Performance Team: Improve GPU benchmarks and titles at the driver level

— AMD Driver Team: Inspect apps that cause driver problems

— AMD Game Compute Team: Debug and optimize game technologies for new GPU hardware

- AMD Mecha Demo, Ladybug, Leo demo

• External users

— Graphics developers: Used in the development of DirectX®11 and OpenGL graphics

applications

Who uses GPU PerfStudio2?

Remote and local debug sessions

• Local usage client and

server run on a single

machine (Windows® only –

DirectX® or OpenGL)

• Remote usage client and

server run on separate

computers. Allows the game

to be run full screen. Higher

profiling accuracy, useful

during final optimization

(Server - Windows® or

Linux®)

LOCAL DEBUGGING SERVER & CLIENT ON SAME COMPUTER

Server Client

Network

Server Client

Local and remote debug sessions

• Two clients can connect to a local

and remote server simultaneously

• First client – connect to remote

game running on Linux®

• Second client – connect to local

game running on Windows®

• Compare DirectX® 11 on Windows®

to OpenGL Linux®

• Compare OpenGL on Windows® to

OpenGL on Linux®

• This is the scenario we will be

demonstrating today

LOCAL DEBUGGING SERVER & CLIENT ON SAME COMPUTER

Client

Server

Server

Dual remote debug sessions

• Two clients can connect to

remote servers simultaneously

• First client connects to remote

game running on Linux®

• Second client connects to

remote game running on

Windows®

• Compare DirectX®11 on

Windows® to OpenGL on

Linux®

• Compare OpenGL on

Windows® to OpenGL on

Linux®

LOCAL DEBUGGING SERVER & CLIENT ON SAME COMPUTER

Client

Server
Server

How GPS2 works

Game Host Computer

GPUPerfServer.exe Process

(Simple Web Server)

Game Process

Micro.dll

GLserver.dll

AMD Catalyst Display Driver

AMD GPU

Shared

Memory

GPUPerfClient.exe application
HTTP requests

Graphics

API

USING GPU PERFSTUDIO2 FOR LINUX

• GPU PerfStudio2 (GPS2) supported OpenGL early in its development

• OpenGL support grew during the development of Brink and Rage

— Used in house at AMD to debug driver issues and for GPU

profiling

• GPS2 was used by Valve in the porting of Source Engine to OpenGL

― First tool that would work with a “large” OpenGL application

• AMD’s gDEBugger was also used by Valve

— Helps in debugging context creation code by checking for

common OpenGL context creation errors

— gDEBugger features now supported by AMD’s CodeXL

GPU PerfStudio2’s OpenGL Background

• GPS2 was used by Valve in the porting of Source Engine to Linux®

• How? GPS2 only ran on Windows® at the time?

— Valve found that most AMD driver issues on Linux® also existed

in the Windows® driver so could be debugged/reported on

Windows®

— The tools ecosystem on Windows® was already well developed

so most of the work could be done on Windows®

— No real need to move existing tools to Linux® (at that time)

GPU PerfStudio2’s OpenGL Background

• Drawback of GPS2 only running on Windows®

— Not possible to profile the GPU directly on Linux® using GPS2

• What about GPUPerfAPI?

— AMD’s library for accessing GPU performance counters on AMD GPUs

— Available for Linux® and Windows®

— Developers can integrate GPU profiling into their own tools using GPUPerfAPI

— AMD’s GPS2 and CodeXL use GPUPerfAPI under the hood

• With the release of Steam for Linux® GPU tools are even more important to the

game developer community at large

• AMD started porting GPU PerfStudio2 to Linux® in mid-2013

— Targeted Steam for Linux® games

— Standalone OpenGL applications

GPU PerfStudio2’s Linux Background

• Works with most current Steam for Linux games

• Left4Dead2

• Portal

• DOTA 2

• Half-Life2

• Counter Strike

• TeamFortress2

• Targeting Ubuntu12.04

• Currently in beta testing

• Availability end of Q1 2014

GPU PerfStudio2 for Linux

• GPU PerfStudio2 running with the GpuTest Furmark OpenGL

benchmarking application

• Download: http://www.geeks3d.com/gputest/

Stop talking! Show me

http://www.geeks3d.com/gputest/
http://www.geeks3d.com/gputest/
http://www.geeks3d.com/gputest/

• Extract the GPUPerfStudio2 tarball in:

~/Development/GPUPerfStudio

• Install GpuTest Furmark in:

~/Development/testApps/GpuTest

• Create a shell script in the following dir:

~Development/scripts/furmark.sh

• Contents of the above furmark.sh script:

cd ~/Development/testApps/GpuTest

~/Development/GPUPerfstudio/x64/GPUPerfServer –S start_furmark_windowed_1024x640.sh

GPU PerfStudio2 Linux setup

cd to the app directory
Full path to GPU PerfStudio2

-S option specifies the shell
script that runs the demo The Furmark startup shell script

(provided by Furmark)

• To run Furmark with GPU PerfStudio
cd ~/Development/scripts

./furmark.sh

• Start GPUPerfClient on Windows®

GPU PerfStudio2 Linux startup

Click on Windows\Settings
to bring up the settings

dialog
Click Connect Button

GPS2 can override the CPU time
functions to “Freeze” the

progress of your game. For
current Valve games set the

Time Spoofing method to
“None”.

Then close dialog

GPU PerfStudio2 Client Connection

Enter Linux box IP address
(to get this type ifconfig on

Linux console)

Specify port 8080

Click Connect

GPU PerfStudio2 Client Connection

Select the OpenGL process
Click OK

GPU PerfStudio2 Client Connection

Click the Pause Button to
capture a frame

GPU PerfStudio2 Client Connection

Application is paused and
main tool buttons are available

• GPU PerfStudio2 running with GpuTest Furmark on Linux® and

Windows®

• Overview of the Frame Debugger, Profiler and API Trace

• Using the Profiler and shader editor to optimize your shaders

• Running Windows® and Linux® sessions simultaneously (compare

OpenGL on Windows® to OpenGL on Linux®)

Seriously, Stop talking! Show me

DATA-MINING YOUR GAME USING

GPU PERFSTUDIO2

• As we mentioned earlier GPU PerfStudio2 has web-like behavior

• GPU PerfStudio2 modifies your game into a server that responds

to specific commands for graphics API data

• The GPUPerfClient (a .NET app) makes requests to port 80 on

Windows®, and port 8080 for Linux® servers

• You can see the requests for data in the console output of the

server

• A history of the requests can be accessed in the GPUPerfClient

Data-mining your game using GPU PerfStudio2

Access the server log from the
Help menu

Data-mining your game using GPU PerfStudio2

Debug messages
are included

Here is a request for
the shader code at the

current draw call

Data-mining your game using GPU PerfStudio2

• Requests to the server are in the form:

http://192.168.1.2/2876/OpenGL/FD/Pipeline/FS/codeviewer.xml

• It is possible to use PerfStudio2 web requests in scripts to

automate and customize access to your app data

• As part of the work carried out on Far Cry3 we needed to know

where specific sections of HLSL code were being used in a frame

• We were able to use a script to retrieve the HLSL code from each

draw call in a frame an search the code for keywords that would

identify the code.

Data-mining your game using GPU PerfStudio2

FarCry3 running with
GPU PerfStudio2

Attach the GPU PerfClient, pause
the app, move to draw call

We can see the data
command requests in the

server console window

Use the command URL in a
web browser to request data

from the server

We can access state data

We can access the shader code.
In fact we can access all data

necessary to reconstruct the draw
call.

Data-mining your game using GPU PerfStudio2

Script that searches the first 50 draw calls for fragment shaders that

contain the string “Steam”.

Data-mining your game using GPU PerfStudio2

Create a user agent object

 use LWP::UserAgent;

 $ua = new LWP::UserAgent;

 $ua->agent("AgentName/0.1 " . $ua->agent);

 my $HTML_Request = "text/html";

 my $XML_Request = "text/xml";

###

Change the following value to be the starting breakpoint in the frame (NOTE:Index starts at 1)

 my $GPS_BreakpointID = "0";

Change the following value to be the number of draw calls (breakpoints) you want to process.

Look at the FrameDebugger in the PerfStudio2 client to get the maximum number of draw calls (breakpoints).

Make sure you don't fall off the end of the draw call list.

 my $GPS_NumBreakpoints = 50;

 my $searchString = Steam;

###

Get the Process ID of the application

use XML::Simple;

• NOTE for Linux® users

• Port 80 is not available in user mode for web access

• GPU PerfStudio2 for Linux has a script to redirect web access to

port 8080

• You can find the script in the GPUPerfStudio directory

redirport80.sh

Data-mining your game using GPU PerfStudio2

• Steam games for Linux are downloaded to:

~/.steam/steam/SteamApps/common/

• DOTA2 is downloaded to:

~/.steam/steam/SteamApps/common/Dota 2 beta

• In this directory is a shell script named “dota.sh”, edit it as follows:

1. Change the export LD_LIBRARY_PATH to point to the GPS2 server folder:

Export LD_LIBRARY_PATH="${GAMEROOT}"/bin:~/Development/GPUPerfStudio/x86:$LD_LIBRARY_PATH

2. Set the GAME_DEBUGGER option as follows:

GAME_DEBUGGER=~/Development/GPUPerfStudio/x86/GPUPerfServer

Starting Steam for Linux games with GPS2

• To run the game

• Make sure the steam executable isn't running. If it is, it will show up in

the app bar on the left of the screen. This will ensure that GPU

PerfStudio2 will use the console window for output

• Each Steam game has its own ID - DOTA2 is 570

• go to root steam directory:

 $ cd ~/.steam/steam

• From there, type:

 $ steam steam://rungameid/570

Starting Steam for Linux games with GPS2

• Demonstration of more profiler features

• Demonstration of Scripting DOTA2 (Linux)

Data-mining your game using GPU PerfStudio2

• APITrace - https://github.com/apitrace/apitrace

• Trace OpenGL, OpenGL ES, Direct3D, and DirectDraw APIs calls to a file

• Replay OpenGL and OpenGL ES calls from a file

• Inspect OpenGL state at any call while retracing

• Visualize and edit trace files

• Use APITrace to capture OpenGL traces on Linux® or Windows® and playback on

either

• GPU PerfStudio2 supports the playback of traces allowing you to debug and

optimize using a small subset of game frames

• Ideal for capturing rendering issues and sharing them between developers for

solutions

GPU PerfStudio2 and APITrace

GPU PerfStudio2 Latest Version

What’s new in GPS2.14?

• Hardware counter support for AMD “Hawaii” (R9 290 series) GPU’s

• Improved support for multithreaded applications

• Pipeline specific counters for OpenGL

• Support for OpenGL Compute

Currently in development

• Support for Linux®/OpenGL applications

• Support for Mantle on Windows7®

• GPU PerfStudio2 is AMD's performance and debugging tool

for graphics applications

• A suite of tools that can be used to debug and increase

performance on AMD GPUs

• Works on Windows® and Linux®

• Ideal for debugging and optimizing OpenGL games on

Windows® and Linux

• Supports Steam for Linux games

• Available end of Q1 2014

Summary

• Rich Geldreich, Jason Mitchell and all at Valve who have used and

supported GPUPerfStudio2

• Dan Ginsburg, Peter Lohrmann, and Graham Sellers for OpenGL

support

• Valve for inviting us to attend and present at Steam Dev Days 2014

• All who attended this presentation

Thank You

• All AMD Graphics Tools

http://developer.amd.com/tools-and-sdks/graphics-development/

• GPU PerfStudio2

http://developer.amd.com/tools-and-sdks/graphics-development/gpu-perfstudio-2/

• GPUPerfAPI – Performance Counter Library

http://developer.amd.com/tools-and-sdks/graphics-development/gpuperfapi/

• CodeXL – GPU debugging for OpenCL™ & OpenGL API calls and

OpenCL™ kernel
http://developer.amd.com/tools-and-sdks/heterogeneous-computing/codexl/

• gDEBugger – OpenCL/OpenGL debugger (end-of-line)

http://developer.amd.com/tools-and-sdks/heterogeneous-computing/archived-

tools/amd-gdebugger/

AMD Graphics Tools Download Information

Gordon Selley

gordon.selley@amd.com

Tony Hosier

tony.hosier@amd.com

Download AMD Graphics Tools

http://developer.amd.com/tools-and-sdks/graphics-development/

Questions?

mailto:gordon.selley@amd.com
mailto:gordon.selley@amd.com
mailto:tony.hosier@amd.com

GORDON SELLEY

TONY HOSIER
AMD GPU DEVELOPER TOOLS TEAM

OPTIMIZING LINUX GAMES FOR AMD

GRAPHICS USING GPU PERFSTUDIO2

