
MOVING TO OPENGL 

Jason Mitchell 

Dan Ginsburg 

Rich Geldreich 

Peter Lohrmann 



ÅOpenGL Strategy - Jason 

ÅShipping shaders - Dan 

ÅNew debugging tools ï Rich & Peter 

Outline 



You are going to use OpenGL 



ÅSteamOS 

ÅDesktop  Linux, OS X & Windows 

ÅChina overwhelmingly XP but 

fairly modern hardware 

ÅMobile  OpenGL ES is ubiquitous 

ÅEven ñBig OpenGLò arriving 

ÅWebGL 

OpenGL is Everywhere 



Steam Graphics Hardware 

Direct3D OpenGL 

Steam Hardware Survey, Dec 2013 



Steam OpenGL Drivers 

Steam Hardware Survey, Dec 2013 

Å Over time, we want the chart on the right to look more like the chart on the left 

Å Some challenges: 

Å Apple currently on 4.1 

Å Vendors have varying XP support 

Hardware Capability Installed Drivers 



Steam Operating Systems 

Steam Hardware Survey, Dec 2013 



DirectX and Total Available Market 

GPUs Systems 
(Windows Vista, 7, 8) 

DirectX 11 67% 62% 

DirectX 10.x 96% 86% 

DirectX 9 100% 100% 



OpenGL and Total Available Market 

GPUs Systems 

OpenGL 4.x 67% 67% 

OpenGL 3.3 96% 96% 

OpenGL 2.1 100% 100% 



ÅValve is expanding beyond its traditional borders 

ÅThe most recent example is Dota in China 

ÅWindows XP is extremely prevalent in China 

Emerging Markets 



Chinese Cyber Cafe OS Versions 

Data from the Yi You cyber cafe platform 

No DirectX10 or 

DirectX11 games for 

these customers 



Dota Users in China 

Dota users in China 

January 2014 

ÅWindows XP very popular 

ÅWe think this is a lower bound on XP in China 

Å Hardware is modern! 

Å Use OpenGL to access that hardware! 



ÅSource 2 has multiple rendering backends 

ÅOpenGL backend is a peer to others 

ÅCurrently Direct3D-centric 

ÅHLSL gets translated to GLSL 

ÅSeparate Shader Objects etc 

ÅWould like to drop the Direct3D backends and go 

OpenGL-exclusive 

 

OpenGL Strategy 



ÅAMD 

ÅNVIDIA 

Å Intel ï Two separate teams! 

ÅBinary drivers on Windows 

ÅOpen Source drivers on Linux 

ÅApple 

Working Closely With Desktop Vendors 



ÅShipping Shaders 

ÅValidation 

ÅEfficient shipping representation 

ÅGraphics Debugging 

ÅVendor tools are improving, especially NSIGHT 

ÅCapturing repro scenarios 

Åapitrace ï Open source tool developed externally 

ÅVOGL  ï  New open source tools from Valve 

Our biggest near term challenges 
Dan 

Rich & 

Peter 



Shipping Shaders 

ÅTranslation 

ÅValidation 

ÅShipping Representation 

Overview 



Shipping Shaders 

ÅTranslation 

ÅValidation 

ÅShipping Representation 

Overview 



HLSL -> GLSL 

Source 1: 

ÅDX9ASM -> GLSL 

Works, but some downsides: 

ÅDebugging hard 

ÅLoss of information 

ÅNot extensible 

 

 



HLSL -> GLSL 

Source 2: 

ÅTranslate at the source level 

Reasoning: 

ÅEasier to debug 

ÅEasier to use GLSL features 

ÅD3D10/11 bytecode not as well documented as 

DX9 

 



Translation Options 

hlsl2glslfork 

ÅNot DX10/11-compatible 

MojoShader 

ÅShader Model 3.0 only 

HLSLCrossCompiler, fxdis-d3d1x 

ÅDX10/11 ASM 

 

 



Translation Approach 

Valve already had ANTLR-based HLSL parser: 

ÅUsed to extract semantics, constant buffers, 

annotations 

ÅOnly minimally understands HLSL, accepts 

everything inside of ñ{ò ñ}ò 



Use macros for HLSL/GLSL differences 

Write GLSL-compatible HLSL 

Extend our ANTLR-based parser: 

ÅStrip HLSL-specific constructs  

ÅGenerate GLSL-specific constructs 

ÅGenerate GLSL main() wrapper 

Zero run-time shader reflection 

 

Translation Approach 



HLSL-> GLSL Wrappers 

Macros for common types: 
Å #define float4 vec4 

Macros for texture definitions and access: 
Å #define CreateTexture2D( name ) uniform sampler2D name 

Å #define Tex2D( name, uv ) texture( name, ( uv ).xy ) 

Wrappers for missing built-in functions: 
Å float saturate( float f ) { return clamp( f, 0.0, 1.0 ); } 

 

 

 

 

 



 

 

HLSL -> GLSL Semantics 

GLSL 
struct  VS_INPUT 

{  

  float3 vPositionOs;  

  float4 vNormalOs;  

  float2 vUv0;  

};  

 
layout(location=0) in float3 
 VS_INPUT_gl_vPositionOs;  

layout(location= 1) in float4 
 VS_INPUT_gl_vNormalOs; 

layout(location=2) in float2 
 VS_INPUT_gl_vUv0; 

 

 

 

layout(location = 0) in float3  VS_INPUT_gl_vPositionOs;  

layout(location = 1) in float4  VS_INPUT_gl_vNormalOs; 

layout(location = 2) in float2  VS_INPUT_gl_vUv0; 

struct  VS_INPUT { 

  float3 vPositionOs  

  float4 vNormalOs  

  float2 vUv0  

};  

 

: POSITION  

: NORMAL 

: TEXCOORD0 

 

;  

;  

;  

layout(location = 0) out float3 PS_INPUT_gl_vNormalWs;  

layout(location = 1) out float2 PS_INPUT_gl_vUv0;  

struct  PS_INPUT { 

  float4 vOutPos  

  float3 vNormalWs  

  float2 vUv0  

};  

 

: SV_Position  

: TEXCOORD1 

: TEXCOORD0 

 

;  

;  

;  



 HLSL ->GLSL main() wrapper 
void  main() {  

  VS_INPUT mainIn;  

  PS_INPUT mainOut;  

 

  mainIn.vPositionOs = VS_INPUT_gl_vPositionOs;  

  mainIn.vNormalOs = VS_INPUT_gl_vNormalOs;  

  mainIn.vUv0 = VS_INPUT_gl_vUv0;  

 

  mainOut = MainVs( mainIn );  

   

  gl_Position = mainOut.vOutPos;  

  PS_INPUT_gl_vNormalWs = mainOut.vNormalWs;  

  PS_INPUT_gl_vUv0 = mainOut.vUv0;  

}  



GLSL-Compatible HLSL 
No implicit conversions: 

Å o.vColor.rgb = 1.0 - flRoughness; // BAD 

Å o.vColor.rgb = float3( 1.0, 1.0, 1.0 ) - flRoughness.xxx; // GOOD 

No C-style casts: 
Å int nLoopCount = ( int ) FILTER_NUMTAPS; // BAD 

Å int nLoopCount = int ( FILTER_NUMTAPS ); // GOOD 

No non-boolean conditionals: 
Å #define S_NORMAL_MAP 1 

Å if ( S_NORMAL_MAP ) // BAD 

Å if ( S_NORMAL_MAP != 0 ) // GOOD 

No static local variables 

 

ARB_shading_language_420pack 



Further GLSL Compatibility 

ÅUse std140 uniform buffers to match D3D 

ÅUse ARB_separate_shader_objects 

ÅUse ARB_shading_language_420pack 

 

 



Zero run-time shader reflection 

Set uniform block bindings: 
 layout( std140, row_major   

 {      

  float4x4 g_matWorldToProjection ;  

  // é 

 }; 

 

Set sampler bindings: 
                                  

Shader Reparser 

, binding=0 

layout( binding = 0 ) 

) uniform PerViewConstantBuffer_t  

uniform sampler2D g_tColor; 

Original GLSL 

Validate 

Validated GLSL 

Final GLSL 

Insert bindings 

Validate 

Reflect 



Shipping Shaders 

ÅTranslation 

ÅValidation 

ÅShipping Representation 

Overview 



ÅProblem: how to determine GLSL is valid? 

ÅD3D has D3DX-like offline tool 

ÅEvery OpenGL driver has a different compiler 

ÅCompilation tied to HW/driver in system 

 

 

 

Shader Validation 



ÅCompile on all GL drivers 

ÅConsidered this option seriously, very painful 

Åcgc (NVIDIA) 

ÅEnd-of-life 

ÅMesa (used by glsl-optimizer project) 

ÅGood option, but was missing features we 

needed 

 

 

 

 

 

Reference Compilers Considered 



ÅRealized we should not solve this problem 

ourselves 

ÅOpenGL needs a reference compiler 

ÅDiscussed with other ISVs and Khronos 

ÅKhronos came through: 

Åglslang selected as reference compiler 

OpenGL Community Problem 



ÅOpen source 

ÅC and C++ API 

ÅCommand-line tool 

ÅLinux/Windows 

glslang Introduction 



ÅExtend GLSL feature support 

ÅGLSL v4.20 

ÅShader Model 4/5 (GS/TCS/TES) 

ÅARB_shading_language_420pack 

ÅARB_gpu_shader5 (partial) 

ÅReflection API 

ÅActive uniforms, uniform buffers 

 

Valve-funded glslang Enhancements 



ÅEvery shader validated/reflected with glslang 

ÅUsed for distributed compilation 

ÅFound many issues in our shaders we would not 

have found until testing: 

ÅAMD/NV/Intel accepting invalid GLSL 

ÅAMD/NV/Intel not accepting correct GLSL 

ÅLed us to file bugs against IHVôs 

 

How We Use glslang 



Where to get it: 

http://www.khronos.org/opengles/sdk/tools/Reference-Compiler/  

glslang 

http://www.khronos.org/opengles/sdk/tools/Reference-Compiler/
http://www.khronos.org/opengles/sdk/tools/Reference-Compiler/
http://www.khronos.org/opengles/sdk/tools/Reference-Compiler/


Shipping Shaders 

ÅTranslation 

ÅValidation 

ÅShipping Representation 

Overview 



Current options: 

ÅGLSL source 

ÅProgram binaries (ARB_get_program_binary) 

Shipping Shaders 



Issues: 

ÅSlow shader compiles compared to D3D bytecode 

ÅHowever, subsequent compiles are 

comparable to D3D if driver has a shader 

cache 

Å IP Leakage 

 

 

GLSL Source 



Issues: 

ÅExtremely fragile to driver/HW changes 

ÅStill requires GLSL to be available (at least at 

install time) 

 

Program Binaries 



GLSL 

Driver A 763 ms 

Driver B 229 ms 

Driver A Shader Cache 16 ms 

Shader Compilation Performance 

Optimized GLSL (cgc) 

132 ms 

111 ms 

14 ms 



Solves many problems at once: 

ÅFaster compile times (comparable to D3D IL) 

ÅNo IP leakage 

ÅSingle reference compiler 

Active area of work: 

ÅOpenCL SPIR 1.2 exists 

ÅValve advocating for IR in Khronos 

 

Intermediate Representation (IR) 



ÅTranslation 

ÅValidation 

ÅShipping Representation 

 

Summary 



VOGL 

OpenGL Tracing and Debugging 

 

Rich Geldreich, Peter Lohrmann 



Å   The OpenGL debugging situation is, well, almost nonexistent 

(but improving). 

Å   Weôve spent a lot of time debugging GL/D3D apps. 

Å   Weôve been let down by the available debugging tools. 

Why a New Debugger? 



Å Open Source 

Å Steam Integration 

Å Vendor / Driver version neutral  

Å No special app builds needed 

Å Frame capturing, full stream tracing, trace trimming 

Å Optimized replayer 

Å OpenGL usage validation 

Å Regression testing, benchmarking 

Å Robust API support: GL v3/4.x, core or compatibility contexts 

Å UI to edit captures, inspect state, diff snapshots, control tracing 

VOGL High Level Goals 



Å  Trace File (Binary or JSON) 

ÅBinary trace: Header, GL trace packets, zip64 archive at end 

ÅJSON trace: 1 JSON file per frame + loose files or .zip archive 

ÅArchive contains: state snapshot, frame directory (offsets, 

JPEGôs), backtrace map, etc.  

Å  State Snapshot 

ÅRestorable object containing all GL state: contexts, buffers, 

shaders, programs, etc. 

ÅSerialized as JSON+loose files, JSON diffôable using common 
tools 

 

Key Concepts 



Å  Full-Stream Trace 

ÅContains all GL calls made by app 

ÅOptional: State snapshot keyframes for fast seeking 

Å  Single/Multi-Frame Trace 

ÅState snapshot followed by next X frame(s) of GL calls 

Å  Trimming 

ÅTake 2+ frame trace and extract 1+ frame(s) into a new trace file 

 

 

 

Key Concepts 



Å   Driver/GPU torture test 

Å   DVR-style replay mode 

Å   vogleditor 

 

Demos 



Å   Valve: 

Å All GoldSrc engine titles: Half-Life, Counterstrike, TFC, etc. 

Å All Source engine titles: Portal, DotA 2,TF2, L4D2, Half-Life 2, etc. 

Å Steam: 2ft UI, Steam Overlay 

Å   3rd-party: 

Å 10,000,000, Air Conflicts: Pacific Carriers, BIT.TRIP Runner2, Bastion, Brutal Legend, Cubemen 2, 

Darwinia, Dynamite Jack, Extreme TuxRacer, Galcon Fusion, Metro Last Light, Multiwinia, Natural 

Selection 2, No More Room in Hell, Not the Robots!!!, Oil Rush, Overgrowth, Penumbra (series), Postal 2 

(Unreal Engine), Serious Sam 3, Solar 2, Starbound, Steel Storm, Strike Suit Zero, The 39 Steps, The 

Cave, Trine 2, Wargame: European Escalation, World of Goo, X3 (series) 

Å   Various samples/test suites: OpenGL SuperBible 3rd and 4th editions, G-Truc GL 3.x samples 

Å   Still working on:  

Å Remaining Steam Linux titles 

Å Piglit driver testing framework 

Å G-Truc 4.x Samples 

Å SuperBible 5th/6th edition samples 

 

 

Current App Compatibility 



Å   Incomplete textures (not setting GL_TEXTURE_MAX_LEVEL) 

Å   Calling GL without an active context, unintentional leaks 

Å   Bogus handles 

Å   FBO completeness 

Å   Shipping with GL errors ï sometimes many per-frame 

Å   Debug context warnings 

Å   Perf: Not using trivial DSA (Direct State Access) equivalents 

Å   Perf: Redundant state setting 

Å   Odd patterns: glBindAttribLocation() called after linking the program 

(and never linking the program again), or calling glIsTexture() repeatedly vs. 

glGenôing 

 

 

Common GL Issues Weôve Seen 



Å   libvogltrace.so: Tracer, loadable like libgl.so 

Å   voglreplay: Command line trace processing tool which handles: 

ÅConversion 

ÅBinary<->JSON traces. Conversion to/from JSON is guaranteed lossless. 

ÅPlayback 

ÅBinary or JSON traces 

ÅTrimming 

ÅTo 1-X frames, multi-generation trimming  

ÅDumping 

ÅDump state as JSON or FBO/backbuffer to PNGôs 

ÅFinding 

ÅRegex searching through API calls 

ÅStatistics 

 

Core Tools 1/2 



Å   vogleditor: Qt UI for debugging and editing trace files 

Å   voglbench: Perf. and regression testing 

ÅCurrent plan is to distribute this tool to vendors and users  

Å   voglserver: Run on remote box, launches apps with tracing 

(via Steam or directly) and controls the tracer SO 

Å   Command line tools for remotely controlling a voglserver 

instance 

Core Tools 2/2 



RAD Telemetry Integration 


