
ERIC HOPE

& JOHN MCCASKEY
VALVE

STEAM CONTROLLER OVERVIEW

51% 49%

HEAVY SLIDE WILL CIRCLE BACK

HEAVY SLIDE WILL CIRCLE BACK

HEAVY SLIDE WILL CIRCLE BACK

LETS TALK API INTEGRATION
Using ISteamController for native controller support

INITIALIZING

Once on startup
SteamController()->Init(pchPathToMyConfig);

Config file

 Human readable.

 Defines legacy mappings and pad modes.

 Can leave mostly empty for normal native use.

USING THE API
Check input each frame

 SteamControllerState_t controllerState;

 for(uint32 i=0; i < MAX_STEAM_CONTROLLERS; ++i)

 {

 // Fast call, non blocking, no IPC occurs

 if(SteamController()->GetControllerState(

 i, &controllerState))

 {

 // Struct has pad coordinates, button bitflags

 }

 }

HAPTIC FEEDBACK

To trigger feedback

 SteamController()->TriggerHapticPulse(

 controllerIndex, eTargetPad, unMicroSec);

unMicroSec will impact how intense the feedback feels, good values

start around 100 and go to around 2000.

ADVANCED USAGE

Override Modes
 SteamController()->SetOverrideMode(pchMode);

pchMode is the name of an “override” section in your config file.

Used to flip between pad modes/button configs in different parts of

your game (ie, use legacy mouse in game menus, clear bindings and

use native API in gameplay).

Detailed example in SteamworksExample app in the SDK.

THE FUTURE

Intentionally small/simple API surface for the first version.

Similar to existing controller APIs. Easy to drop into your input engine.

Will grow over time, but the basic API usage should not change. You can

expect it to look the same for the next controller revision.

Send us your questions/ideas/feature requests.

