
Beyond Porting

How Modern OpenGL can

Radically Reduce Driver Overhead

Who are we?

Cass Everitt, NVIDIA Corporation

John McDonald, NVIDIA Corporation

What will we cover?

Dynamic Buffer Generation

Efficient Texture Management

Increasing Draw Call Count

Dynamic Buffer Generation

Problem

Our goal is to generate dynamic geometry directly in place.

It will be used one time, and will be completely regenerated next frame.

Particle systems are the most common example

Vegetation / foliage also common

Typical Solution

void UpdateParticleData(uint _dstBuf) {

 BindBuffer(ARRAY_BUFFER, _dstBuf);

 access = MAP_UNSYNCHRONIZED | MAP_WRITE_BIT;

 for particle in allParticles {

 dataSize = GetParticleSize(particle);

 void* dst = MapBuffer(ARRAY_BUFFER, offset, dataSize, access);

 (*(Particle*)dst) = *particle;

 UnmapBuffer(ARRAY_BUFFER);

 offset += dataSize;

 }

};

// Now render with everything.

The horror

void UpdateParticleData(uint _dstBuf) {

 BindBuffer(ARRAY_BUFFER, _dstBuf);

 access = MAP_UNSYNCHRONIZED | MAP_WRITE_BIT;

 for particle in allParticles {

 dataSize = GetParticleSize(particle);

 void* dst = MapBuffer(ARRAY_BUFFER, offset, dataSize, access);

 (*(Particle*)dst) = *particle;

 UnmapBuffer(ARRAY_BUFFER);

 offset += dataSize;

 }

};

// Now render with everything.

This is so slow.

Driver interlude

First, a quick interlude on modern GL drivers

In the application (client) thread, the driver is very thin.

It simply packages work to hand off to the server thread.

The server thread does the real processing

It turns command sequences into push buffer fragments.

Healthy Driver Interaction Visualized

Application

Driver (Client)

GPU

Driver (Server)

Thread separator

Component separator

State Change

Action Method (draw, clear, etc)

Present

MAP_UNSYNCHRONIZED

Avoids an application-GPU sync point (a CPU-GPU sync point)

But causes the Client and Server threads to serialize

This forces all pending work in the server thread to complete

It’s quite expensive (almost always needs to be avoided)

Healthy Driver Interaction Visualized

Application

Driver (Client)

GPU

Driver (Server)

Thread separator

Component separator

State Change

Action Method (draw, clear, etc)

Present

Client-Server Stall of Sadness

Application

Driver (Client)

GPU

Driver (Server)

Thread separator

Component separator

State Change

Action Method (draw, clear, etc)

Present

It’s okay

Q: What’s better than mapping in an unsynchronized manner?

A: Keeping around a pointer to GPU-visible memory forever.

Introducing: ARB_buffer_storage

ARB_buffer_storage

Conceptually similar to ARB_texture_storage (but for buffers)

Creates an immutable pointer to storage for a buffer

The pointer is immutable, the contents are not.

So BufferData cannot be called—BufferSubData is still okay.

Allows for extra information at create time.

For our usage, we care about the PERSISTENT and COHERENT

bits.

PERSISTENT: Allow this buffer to be mapped while the GPU is using it.

COHERENT: Client writes to this buffer should be immediately visible to

the GPU.

http://www.opengl.org/registry/specs/ARB/buffer_storage.txt

http://www.opengl.org/registry/specs/ARB/buffer_storage.txt
http://www.opengl.org/registry/specs/ARB/buffer_storage.txt

ARB_buffer_storage cont’d

Also affects the mapping behavior (pass persistent and coherent

bits to MapBufferRange)

Persistently mapped buffers are good for:

Dynamic VB / IB data

Highly dynamic (~per draw call) uniform data

Multi_draw_indirect command buffers (more on this later)

Not a good fit for:

Static geometry buffers

Long lived uniform data (still should use BufferData or BufferSubData for

this)

Armed with persistently mapped buffers

// At the beginning of time

flags = MAP_WRITE_BIT | MAP_PERSISTENT_BIT | MAP_COHERENT_BIT;

BufferStorage(ARRAY_BUFFER, allParticleSize, NULL, flags);

mParticleDst = MapBufferRange(ARRAY_BUFFER, 0, allParticleSize,

 flags);

mOffset = 0;

// allParticleSize should be ~3x one frame’s worth of particles

// to avoid stalling.

Update Loop (old and busted)

void UpdateParticleData(uint _dstBuf) {

 BindBuffer(ARRAY_BUFFER, _dstBuf);

 access = MAP_UNSYNCHRONIZED | MAP_WRITE_BIT;

 for particle in allParticles {

 dataSize = GetParticleSize(particle);

 void* dst = MapBuffer(ARRAY_BUFFER, offset, dataSize, access);

 (*(Particle*)dst) = *particle;

 offset += dataSize;

 UnmapBuffer(ARRAY_BUFFER);

 }

};

// Now render with everything.

Update Loop (new hotness)

void UpdateParticleData() {

 for particle in allParticles {

 dataSize = GetParticleSize(particle);

 mParticleDst[mOffset] = *particle;

 mOffset += dataSize; // Wrapping not shown

 }

};

// Now render with everything.

Test App

Performance results

160,000 point sprites

Specified in groups of 6 vertices (one particle at a time)

Synthetic (naturally)

Method FPS Particles / S

Map(UNSYNCHRONIZED) 1.369 219,040

BufferSubData 17.65 2,824,000

D3D11 Map(NO_OVERWRITE) 20.25 3,240,000

Performance results

160,000 point sprites

Specified in groups of 6 vertices (one particle at a time)

Synthetic (naturally)

Room for improvement still, but much, much better.

Method FPS Particles / S

Map(UNSYNCHRONIZED) 1.369 219,040

BufferSubData 17.65 2,824,000

D3D11 Map(NO_OVERWRITE) 20.25 3,240,000

Map(COHERENT|PERSISTENT) 79.9 12,784,000

The other shoe

You are responsible for not stomping on data in flight.

Why 3x?

1x: What the GPU is using right now.

2x: What the driver is holding, getting ready for the GPU to use.

3x: What you are writing to.

3x should ~ guarantee enough buffer room*…

Use fences to ensure that rendering is complete before you begin

to write new data.

Fencing

Use FenceSync to place a new fence.

When ready to scribble over that memory again, use

ClientWaitSync to ensure that memory is done.

ClientWaitSync will block the client thread until it is ready

So you should wrap this function with a performance counter

And complain to your log file (or resize the underlying buffer) if you

frequently see stalls here

For complete details on correct management of buffers with

fencing, see Efficient Buffer Management [McDonald 2012]

Efficient Texture Management

Or “how to manage all texture memory myself”

Problem

Changing textures breaks batches.

Not all texture data is needed all the time

Texture data is large (typically the largest memory bucket for games)

Bindless solves this, but can hurt GPU performance

Too many different textures can fall out of TexHdr$

Not a bindless problem per se

Reserve – The act of allocating virtual memory

Commit – Tying a virtual memory allocation to a physical backing

store (Physical memory)

Texture Shape – The characteristics of a texture that affect its

memory consumption

Specifically: Height, Width, Depth, Surface Format, Mipmap Level Count

Terminology

Old Solution

Texture Atlases

Problems

Can impact art pipeline

Texture wrap, border filtering

Color bleeding in mip maps

Texture Arrays

Introduced in GL 3.0, and D3D 10.

Arrays of textures that are the same shape and format

Typically can contain many “layers” (2048+)

Filtering works as expected

As does mipmapping!

Sparse Bindless Texture Arrays

Organize loose textures into Texture Arrays.

Sparsely allocate Texture Arrays

Introducing ARB_sparse_texture

Consume virtual memory, but not physical memory

Use Bindless handles to deal with as many arrays as needed!

Introducing ARB_bindless_texture

uncommitted

layer

uncommitted

layer

uncommitted

layer

ARB_sparse_texture

Applications get fine-grained control of physical

memory for textures with large virtual allocations

Inspired by Mega Texture

Primary expected use cases:

Sparse texture data

Texture paging

Delayed-loading assets

http://www.opengl.org/registry/specs/ARB/sparse_texture.txt

http://www.opengl.org/registry/specs/ARB/sparse_texture.txt
http://www.opengl.org/registry/specs/ARB/sparse_texture.txt
http://www.opengl.org/registry/specs/ARB/sparse_texture.txt

ARB_bindless_texture

Textures specified by GPU-visible “handle” (really an address)

Rather than by name and binding point

Can come from ~anywhere

Uniforms

Varying

SSBO

Other textures

Texture residency also application-controlled

Residency is “does this live on the GPU or in sysmem?”

https://www.opengl.org/registry/specs/ARB/bindless_texture.txt

https://www.opengl.org/registry/specs/ARB/bindless_texture.txt

Advantages

Artists work naturally

No preprocessing required (no bake-step required)

Although preprocessing is helpful if ARB_sparse_texture is unavailable

Reduce or eliminate TexHdr$ thrashing

Even as compared to traditional texturing

Programmers manage texture residency

Works well with arbitrary streaming

Faster on the CPU

Faster on the GPU

Disadvantages

Texture addresses are now structs (96 bits).

64 bits for bindless handle

32 bits for slice index (could reduce this to 10 bits at a perf cost)

ARB_sparse_texture implementations are a bit immature

Early adopters: please bring us your bugs.

ARB_sparse_texture requires base level be a multiple of tile size

(Smaller is okay)

Tile size is queried at runtime

Textures that are power-of-2 should almost always be safe.

Implementation Overview

When creating a new texture…

Check to see if any suitable texture array exists

Texture arrays can contain a large number of textures of the same shape

Ex. Many TEXTURE_2Ds grouped into a single TEXTURE_2D_ARRAY

If no suitable texture, create a new one.

Texture Container Creation (example)

GetIntegerv(MAX_SPARSE_ARRAY_TEXTURE_LAYERS, maxLayers);

Choose a reasonable size (e.g. array size ~100MB virtual)

If new internalFormat, choose page size
GetInternalformativ(…, internalformat, NUM_VIRTUAL_PAGE_SIZES, 1, &numIndexes);

Note: numIndexes can be 0, so have a plan

Iterate, select suitable pageSizeIndex

BindTexture(TEXTURE_2D_ARRAY, newTexArray);

TexParameteri(TEXTURE_SPARSE, TRUE);

TexParameteri(VIRTUAL_PAGE_SIZE_INDEX, pageSizeIndex);

Allocate the texture’s virtual memory using TexStorage3D

Specifying Texture Data

Using the located/created texture array from the previous step

Allocate a layer as the location of our data

For each mipmap level of the allocated layer:

Commit the entire mipmap level (using TexPageCommitment)

Specify actual texel data as usual for arrays

gl(Compressed|Copy|)TexSubImage3D

PBO updates are fine too

free

slice

free

slice

uncommitted

layer

Allocated layer

uncommitted

layer

Freeing Textures

To free the texture, reverse the process:

Use TexPageCommitment to mark the entire layer (slice) as free.

Do once for each mipmap level

Add the layer to the free list for future allocation

free

slice

free

slice

uncommitted

layer

Freed layer

Combining with Bindless to eliminate binds

At container create time:

Specify sampling parameters via SamplerParameter calls first

Call GetTextureSamplerHandleARB to return a GPU-visible pointer to the

texture+sampler container

Call MakeTextureHandleResident to ensure the resource lives on the GPU

At delete time, call MakeTextureHandleNonResident

With bindless, you explicitly manage the GPU’s working set

Using texture data in shaders

When a texture is needed with the default sampling parameters

Create a GLSL-visible TextureRef object:

 struct TextureRef {

 sampler2DArray container;

 float slice;

 };

When a texture is needed with custom sampling parameters

Create a separate sampler object for the shader with the parameters

Create a bindless handle to the pair using GetTextureSamplerHandle,

then call MakeTextureHandleResident with the new value

And fill out a TextureRef as above for usage by GLSL

C++ Code

Basic implementation (some details missing)

BSD licensed (use as you will)
https://github.com/nvMcJohn/apitest/blob/pdoane_newtests/sparse_bindless_texarray.h

https://github.com/nvMcJohn/apitest/blob/pdoane_newtests/sparse_bindless_texarray.cpp

https://github.com/nvMcJohn/apitest/blob/pdoane_newtests/sparse_bindless_texarray.h
https://github.com/nvMcJohn/apitest/blob/pdoane_newtests/sparse_bindless_texarray.cpp

Increasing Draw Call Count

Let’s draw all the calls!

All the Draw Calls!

Problem

You want more draw calls of smaller objects.

D3D is slow at this.

Naïve GL is faster than D3D, but not fast enough.

XY Problem

Y: How can I have more draw calls?

X: You don’t really care if it’s more draw calls, right?

Really what you want is to be able to draw more small geometry

groupings. More objects.

Well why didn’t you just say so??

First, some background.

What makes draw calls slow?

Real world API usage

Draw Call Cost Visualization

Some background

What causes slow draw calls?

Validation is the biggest bucket (by far).

Pre-validation is “difficult”

“Every application does the same things.”

Not really. Most applications are in completely disjoint states

Try this experiment: What is important to you?

Now ask your neighbor what’s important to him.

Why is prevalidation difficult?

The GPU is an exceedingly complex state machine.

(Honestly, it’s probably the most complex state machine in all of CS)

Any one of those states may have a problem that requires WAR

Usually the only problem is overall performance

But sometimes not. 

There are millions of tests covering NVIDIA GPU functionality.

FINE.

How can app devs mitigate these costs?

Minimize state changes.

All state changes are not created equal!

Cost of a draw call:

 Small fixed cost + Cost of validation of changed state

Feels limiting…

Artists want lots of materials, and small amounts of geometry

Even better: What if artists just didn’t have to care about this?

Ideal Programmer->Artist Interaction

“You make pretty art. I’ll make it fit.”

Relative costs of State Changes

In decreasing cost…

Render Target

Program

ROP

Texture Bindings

Vertex Format

UBO Bindings

Vertex Bindings

Uniform Updates

Note: Not to scale

~1.5M / s

~10M / s

~300K / s

~60K / s

Real World API frequency

API usage looks roughly like this…

Increasing Frequency of Change

Render Target (scene)

Per Scene Uniform Buffer + Textures

IB / VB and Input Layout

Shader (Material)

Per-material Uniform Buffer + Textures

Per-object Uniform Buffer + Textures

Per-piece Uniform Buffer + Textures

Draw

Draw Calls visualized

Render Target

Program

ROP

Texture

UBO Binding

Uniform Updates

Draw

Vertex Format

Draw Calls visualized (cont’d)

Read down, then right

Black—no change

Render Target

Program

ROP

Texture

UBO Binding

Uniform Updates

Draw

Vertex Format

Goals

Let’s minimize validation costs without affecting artists

Things we need to be fast (per app call frequency):

Uniform Updates and binding

Texture Updates and binding

These happen most often in app, ergo driving them to ~0 should

be a win.

Textures

Using Sparse Bindless Texture Arrays (as previously described)

solves this.

All textures are set before any drawing begins

(No need to change textures between draw calls)

Note that from the CPU’s perspective, just using bindless is

sufficient.

That was easy.

Eliminating Texture Binds -- visualized

Increasing Frequency of Change

Render Target (scene)

Per Scene Uniform Buffer + Textures

IB / VB and Input Layout

Shader (Material)

Per-material Uniform Buffer + Textures

Per-object Uniform Buffer + Textures

Per-piece Uniform Buffer + Textures

Draw Render Target

Program

ROP

Texture

UBO Binding

Uniform Updates

Draw

Vertex Format

Boom!

Increasing Frequency of Change

Render Target (scene)

Per Scene Uniform Buffer

IB / VB and Input Layout

Shader (Material)

Per-material Uniform Buffer

Per-object Uniform Buffer

Per-piece Uniform Buffer

Draw Render Target

Program

ROP

Texture

UBO Binding

Uniform Updates

Draw

Vertex Format

Buffer updates (old and busted)

Typical Scene Graph Traversal

for obj in visibleObjectSet {

 update(buffer, obj);

 draw(obj);

}

Buffer updates (new hotness)

Typical Scene Graph Traversal

for obj in visibleObjectSet {

 update(bufferFragment, obj);

}

for obj in visibleObjectSet {

 draw(obj);

}

bufferFragma-wha?

Rather than one buffer per object, we share UBOs for many

objects.

ie, given struct ObjectUniforms { /* … */ };
 // Old (probably not explicitly instantiated,

 // just scattered in GLSL)

 ObjectUniforms uniformData;

 // New

 ObjectUniforms uniformData[ObjectsPerKickoff];

Use persistent mapping for even more win here!

For large amounts of data (bones) consider SSBO.

Introducing ARB_shader_storage_buffer_object

SSBO?

Like “large” uniform buffer objects.

Minimum required size to claim support is 16M.

Accessed like uniforms in shader

Support for better packing (std430)

Caveat: They are typically implemented in hardware as textures

(and can introduce dependent texture reads)

Just one of a laundry list of things to consider, not to discourage use.

http://www.opengl.org/registry/specs/ARB/shader_storage_buffer_object.txt

http://www.opengl.org/registry/specs/ARB/shader_storage_buffer_object.txt

Eliminating Buffer Update Overhead

Increasing Frequency of Change

Render Target (scene)

Per Scene Uniform Buffer

IB / VB and Input Layout

Shader (Material)

Per-material Uniform Buffer

Per-object Uniform Buffer

Per-piece Uniform Buffer

Draw

Render Target

Program

ROP

Texture

UBO Binding

Uniform Updates

Draw

Vertex Format

Sweet!

Increasing Frequency of Change

Render Target (scene)

IB / VB and Input Layout

Shader (Material)

Draw (* each object)

Hrrrrmmmmmm….

Render Target

Program

ROP

Texture

UBO Binding

Uniform Updates

Draw

Vertex Format

So now…

It’d be awesome if we could do all of those kickoffs at once.

Validation is already only paid once

But we could just pay the constant startup cost once.

If only…….

So now…

It’d be awesome if we could do all of those kickoffs at once.

Validation is already only paid once

But we could just pay the constant startup cost once.

If only…….

Introducing ARB_multi_draw_indirect

ARB_multi_draw_indirect

Allows you to specify parameters to draw commands from a

buffer.

This means you can generate those parameters wide (on the CPU)

Or even on the GPU, via compute program.

http://www.opengl.org/registry/specs/ARB/multi_draw_indirect.txt

http://www.opengl.org/registry/specs/ARB/multi_draw_indirect.txt

ARB_multi_draw_indirect cont’d

void MultiDrawElementsIndirect(enum mode,

 enum type

 const void* indirect,

 sizei primcount,

 sizei stride);

ARB_multi_draw_indirect cont’d

const ubyte * ptr = (const ubyte *)indirect;

for (i = 0; i < primcount; i++) {

 DrawArraysIndirect(mode,

 (DrawArraysIndirectCommand*)ptr);

 if (stride == 0)

 {

 ptr += sizeof(DrawArraysIndirectCommand);

 } else {

 ptr += stride;

 }

}

DrawArraysIndirectCommand

typedef struct {

 uint count;

 uint primCount;

 uint first;

 uint baseInstance;

} DrawArraysIndirectCommand;

Knowing which shader data is mine

Use ARB_shader_draw_parameters, a necessary companion to

ARB_multi_draw_indirect

Adds a builtin to the VS: DrawID (InstanceID already available)

This tells you which command of a MultiDraw command is being

executed.

When not using MultiDraw, the builtin is specified to be 0.

Caveat: Right now, you have to pass this down to other shader

stages as an interpolant.

Hoping to have that rectified via ARB or EXT extension “real soon now.”

http://www.opengl.org/registry/specs/ARB/shader_draw_parameters.txt

http://www.opengl.org/registry/specs/ARB/shader_draw_parameters.txt

Applying everything

CPU Perf is massively better

5-30x increase in number of distinct objects / s

Interaction with driver is decreased ~75%

Note: GPU perf can be affected negatively (although not too

badly)

As always: Profile, profile, profile.

Previous Results

Render Target

Program

ROP

Texture

UBO Binding

Uniform Updates

Draw

Vertex Format

Visualized Results

Render Target

Program

ROP

Texture

UBO Binding

Uniform Updates

Draw

Vertex Format MultiDraw

Where we came from

Render Target

Program

ROP

Texture

UBO Binding

Uniform Updates

Draw

Vertex Format

Conclusion

Go forth and work magnify.

Questions?

jmcdonald at nvidia dot com

cass at nvidia dot com

